30 research outputs found

    Transcriptome analysis approaches for the isolation of trichome-specific genes from the medicinal plant Cistus creticus subsp. creticus

    No full text
    Cistus creticus subsp. creticus is a plant of intrinsic scientific interest due to the distinctive pharmaceutical properties of its resin. Labdane-type diterpenes, the main constituents of the resin, exhibit considerable antibacterial and cytotoxic activities. In this study chemical analysis of isolated trichomes from different developmental stages revealed that young leaves of 1–2 cm length displayed the highest content of labdane-type diterpenes (80 mg/g fresh weight) whereas trichomes from older leaves (2–3 or 3–4 cm) exhibited gradual decreased concentrations. A cDNA library was constructed enriched in transcripts from trichomes isolated from young leaves, which are characterized by high levels of labdane-type diterpenes. Functional annotation of 2,022 expressed sequence tags (ESTs) from the trichome cDNA library based on homology to A. thaliana genes suggested that 8% of the putative identified sequences were secondary metabolism-related and involved primarily in flavonoid and terpenoid biosynthesis. A significant proportion of the ESTs (38%) displayed no significant similarity to any other DNA deposited in databases, indicating a yet unknown function. Custom DNA microarrays constructed with 1,248 individual clones from the cDNA library facilitated transcriptome comparisons between trichomes and trichome-free tissues. In addition, gene expression studies in various Cistus tissues and organs for one of the genes highlighted as the most differentially expressed by the microarray experiments revealed a putative sesquiterpene synthase with a trichome-specific expression pattern. Full length cDNA isolation and heterologous expression in E. coli followed by biochemical analysis, led to the characterization of the produced protein as germacrene B synthase

    Distribution of lipid transfer protein 1 (LTP1) epitopes associated with morphogenic events during somatic embryogenesis of Arabidopsis thaliana

    No full text
    Using immunocytochemical methods, at both the light and electron microscopic level, we have investigated the spatial and temporal distribution of lipid transfer protein 1 (LTP1) epitopes during the induction of somatic embryogenesis in explants of Arabidopsis thaliana. Immunofluorescence labelling demonstrated the presence of high levels of LTP1 epitopes within the proximal regions of the cotyledons (embryogenic regions) associated with particular morphogenetic events, including intense cell division activity, cotyledon swelling, cell loosening and callus formation. Precise analysis of the signal localization in protodermal and subprotodermal cells indicated that cells exhibiting features typical of embryogenic cells were strongly labelled, both in walls and the cytoplasm, while in the majority of meristematic-like cells no signal was observed. Staining with lipophilic dyes revealed a correlation between the distribution of LTP1 epitopes and lipid substances within the cell wall. Differences in label abundance and distribution between embryogenic and non-embryogenic regions of explants were studied in detail with the use of immunogold electron microscopy. The labelling was strongest in both the outer periclinal and anticlinal walls of the adaxial, protodermal cells of the proximal region of the cotyledon. The putative role(s) of lipid transfer proteins in the formation of lipid lamellae and in cell differentiation are discussed. Key message Occurrence of lipid transfer protein 1 epitopes in Arabidopsis explant cells accompanies changes in cell fate and may be correlated with the deposition of lipid substances in the cell walls
    corecore