122 research outputs found
Topological Lattice Actions
We consider lattice field theories with topological actions, which are
invariant against small deformations of the fields. Some of these actions have
infinite barriers separating different topological sectors. Topological actions
do not have the correct classical continuum limit and they cannot be treated
using perturbation theory, but they still yield the correct quantum continuum
limit. To show this, we present analytic studies of the 1-d O(2) and O(3)
model, as well as Monte Carlo simulations of the 2-d O(3) model using
topological lattice actions. Some topological actions obey and others violate a
lattice Schwarz inequality between the action and the topological charge Q.
Irrespective of this, in the 2-d O(3) model the topological susceptibility
\chi_t = \l/V is logarithmically divergent in the continuum limit.
Still, at non-zero distance the correlator of the topological charge density
has a finite continuum limit which is consistent with analytic predictions. Our
study shows explicitly that some classically important features of an action
are irrelevant for reaching the correct quantum continuum limit.Comment: 38 pages, 12 figure
On the six-dimensional origin of the AGT correspondence
We argue that the six-dimensional (2,0) superconformal theory defined on M
\times C, with M being a four-manifold and C a Riemann surface, can be twisted
in a way that makes it topological on M and holomorphic on C. Assuming the
existence of such a twisted theory, we show that its chiral algebra contains a
W-algebra when M = R^4, possibly in the presence of a codimension-two defect
operator supported on R^2 \times C \subset M \times C. We expect this structure
to survive the \Omega-deformation.Comment: References added. 14 page
The classical origin of quantum affine algebra in squashed sigma models
We consider a quantum affine algebra realized in two-dimensional non-linear
sigma models with target space three-dimensional squashed sphere. Its affine
generators are explicitly constructed and the Poisson brackets are computed.
The defining relations of quantum affine algebra in the sense of the Drinfeld
first realization are satisfied at classical level. The relation to the
Drinfeld second realization is also discussed including higher conserved
charges. Finally we comment on a semiclassical limit of quantum affine algebra
at quantum level.Comment: 25 pages, 2 figure
On the classical equivalence of monodromy matrices in squashed sigma model
We proceed to study the hybrid integrable structure in two-dimensional
non-linear sigma models with target space three-dimensional squashed spheres. A
quantum affine algebra and a pair of Yangian algebras are realized in the sigma
models and, according to them, there are two descriptions to describe the
classical dynamics 1) the trigonometric description and 2) the rational
description, respectively. For every description, a Lax pair is constructed and
the associated monodromy matrix is also constructed. In this paper we show the
gauge-equivalence of the monodromy matrices in the trigonometric and rational
description under a certain relation between spectral parameters and the
rescalings of sl(2) generators.Comment: 32pages, 3figures, references added, introduction and discussion
sections revise
Conical Defects in Higher Spin Theories
We study conical defect geometries in the SL(N) Chern-Simons formulation of
higher spin gauge theories in AdS_3. We argue that (for N\geq 4) there are
special values of the deficit angle for which these geometries are actually
smooth configurations of the underlying theory. We also exhibit a gauge in
which these geometries can be viewed as wormholes interpolating between two
distinct asymptotically AdS_3 spacetimes. Remarkably, the spectrum of smooth
SL(N,C) solutions, after an appropriate analytic continuation, exactly matches
that of the so-called "light primaries" in the minimal model W_N CFTs at finite
N. This gives a candidate bulk interpretation of the latter states in the
holographic duality proposed in [1].Comment: 38 page
Analytic Solution of Bremsstrahlung TBA
We consider the quark--anti-quark potential on the three sphere or the
generalized cusp anomalous dimension in planar N=4 SYM. We concentrate on the
vacuum potential in the near BPS limit with units of R-charge.
Equivalently, we study the anomalous dimension of a super-Wilson loop with L
local fields inserted at a cusp. The system is described by a recently proposed
infinite set of non-linear integral equations of the Thermodynamic Bethe Ansatz
(TBA) type. That system of TBA equations is very similar to the one of the
spectral problem but simplifies a bit in the near BPS limit. Using techniques
based on the Y-system of functional equations we first reduced the infinite
system of TBA equations to a Finite set of Nonlinear Integral Equations
(FiNLIE). Then we solve the FiNLIE system analytically, obtaining a simple
analytic result for the potential! Surprisingly, we find that the system has
equivalent descriptions in terms of an effective Baxter equation and in terms
of a matrix model. At L=0, our result matches the one obtained before using
localization techniques. At all other L's, the result is new. Having a new
parameter, L, allows us to take the large L classical limit. We use the matrix
model description to solve the classical limit and match the result with a
string theory computation. Moreover, we find that the classical string
algebraic curve matches the algebraic curve arising from the matrix model.Comment: 50 pages, 5 figures. v2: references added, JHEP versio
Asymptotic W-symmetries in three-dimensional higher-spin gauge theories
We discuss how to systematically compute the asymptotic symmetry algebras of
generic three-dimensional bosonic higher-spin gauge theories in backgrounds
that are asymptotically AdS. We apply these techniques to a one-parameter
family of higher-spin gauge theories that can be considered as large N limits
of SL(N) x SL(N) Chern-Simons theories, and we provide a closed formula for the
structure constants of the resulting infinite-dimensional non-linear
W-algebras. Along the way we provide a closed formula for the structure
constants of all classical W_N algebras. In both examples the higher-spin
generators of the W-algebras are Virasoro primaries. We eventually discuss how
to relate our basis to a non-primary quadratic basis that was previously
discussed in literature.Comment: 61 page
Spacetimes for λ-deformations
We examine a recently proposed class of integrable deformations to two-dimensional conformal field theories. These {\lambda}-deformations interpolate between a WZW model and the non-Abelian T-dual of a Principal Chiral Model on a group G or, between a G/H gauged WZW model and the non-Abelian T-dual of the geometric coset G/H. {\lambda}-deformations have been conjectured to represent quantum group q-deformations for the case where the deformation parameter is a root of unity. In this work we show how such deformations can be given an embedding as full string backgrounds whose target spaces satisfy the equations of type-II supergravity. One illustrative example is a deformation of the Sl(2,R)/U(1) black-hole CFT. A further example interpolates between the SU(2)ĂSU(2)SU(2)ĂSL(2,R)ĂSL(2,R)SL(2,R)ĂU(1)4 gauged WZW model and the non-Abelian T-dual of AdS3ĂS3ĂT4 supported with Ramond flux
Varespladib and cardiovascular events in patients with an acute coronary syndrome: the VISTA-16 randomized clinical trial
IMPORTANCE: Secretory phospholipase A2(sPLA2) generates bioactive phospholipid products implicated in atherosclerosis. The sPLA2inhibitor varespladib has favorable effects on lipid and inflammatory markers; however, its effect on cardiovascular outcomes is unknown. OBJECTIVE: To determine the effects of sPLA2inhibition with varespladib on cardiovascular outcomes. DESIGN, SETTING, AND PARTICIPANTS: A double-blind, randomized, multicenter trial at 362 academic and community hospitals in Europe, Australia, New Zealand, India, and North America of 5145 patients randomized within 96 hours of presentation of an acute coronary syndrome (ACS) to either varespladib (n = 2572) or placebo (n = 2573) with enrollment between June 1, 2010, and March 7, 2012 (study termination on March 9, 2012). INTERVENTIONS: Participants were randomized to receive varespladib (500 mg) or placebo daily for 16 weeks, in addition to atorvastatin and other established therapies. MAIN OUTCOMES AND MEASURES: The primary efficacy measurewas a composite of cardiovascular mortality, nonfatal myocardial infarction (MI), nonfatal stroke, or unstable angina with evidence of ischemia requiring hospitalization at 16 weeks. Six-month survival status was also evaluated. RESULTS: At a prespecified interim analysis, including 212 primary end point events, the independent data and safety monitoring board recommended termination of the trial for futility and possible harm. The primary end point occurred in 136 patients (6.1%) treated with varespladib compared with 109 patients (5.1%) treated with placebo (hazard ratio [HR], 1.25; 95%CI, 0.97-1.61; log-rank P = .08). Varespladib was associated with a greater risk of MI (78 [3.4%] vs 47 [2.2%]; HR, 1.66; 95%CI, 1.16-2.39; log-rank P = .005). The composite secondary end point of cardiovascular mortality, MI, and stroke was observed in 107 patients (4.6%) in the varespladib group and 79 patients (3.8%) in the placebo group (HR, 1.36; 95% CI, 1.02-1.82; P = .04). CONCLUSIONS AND RELEVANCE: In patients with recent ACS, varespladib did not reduce the risk of recurrent cardiovascular events and significantly increased the risk of MI. The sPLA2inhibition with varespladib may be harmful and is not a useful strategy to reduce adverse cardiovascular outcomes after ACS. TRIAL REGISTRATION: clinicaltrials.gov Identifier: NCT01130246. Copyright 2014 American Medical Association. All rights reserved
- âŠ