23 research outputs found

    Adhesion Failures Determine the Pattern of Choroidal Neovascularization in the Eye: A Computer Simulation Study

    Get PDF
    Choroidal neovascularization (CNV) of the macular area of the retina is the major cause of severe vision loss in adults. In CNV, after choriocapillaries initially penetrate Bruch's membrane (BrM), invading vessels may regress or expand (CNV initiation). Next, during Early and Late CNV, the expanding vasculature usually spreads in one of three distinct patterns: in a layer between BrM and the retinal pigment epithelium (sub-RPE or Type 1 CNV), in a layer between the RPE and the photoreceptors (sub-retinal or Type 2 CNV) or in both loci simultaneously (combined pattern or Type 3 CNV). While most studies hypothesize that CNV primarily results from growth-factor effects or holes in BrM, our three-dimensional simulations of multi-cell model of the normal and pathological maculae recapitulate the three growth patterns, under the hypothesis that CNV results from combinations of impairment of: 1) RPE-RPE epithelial junctional adhesion, 2) Adhesion of the RPE basement membrane complex to BrM (RPE-BrM adhesion), and 3) Adhesion of the RPE to the photoreceptor outer segments (RPE-POS adhesion). Our key findings are that when an endothelial tip cell penetrates BrM: 1) RPE with normal epithelial junctions, basal attachment to BrM and apical attachment to POS resists CNV. 2) Small holes in BrM do not, by themselves, initiate CNV. 3) RPE with normal epithelial junctions and normal apical RPE-POS adhesion, but weak adhesion to BrM (e.g. due to lipid accumulation in BrM) results in Early sub-RPE CNV. 4) Normal adhesion of RBaM to BrM, but reduced apical RPE-POS or epithelial RPE-RPE adhesion (e.g. due to inflammation) results in Early sub-retinal CNV. 5) Simultaneous reduction in RPE-RPE epithelial binding and RPE-BrM adhesion results in either sub-RPE or sub-retinal CNV which often progresses to combined pattern CNV. These findings suggest that defects in adhesion dominate CNV initiation and progression

    Esterase profile in a pyrethroid-resistant Brazilian strain of the cattle tick Boophilus microplus (Acari, Ixodidae)

    No full text
    The cattle tick Boophilus microplus causes great damage in livestock and is considered one of the most important tropical ectoparasites. The traditional method of control is based on the intensive use of pesticides, however the indiscriminate use of these compounds over the years has led to the selection of resistant ticks. Hydrolases, particularly esterases (EST), have been reported to be associated with acaricide resistance in B. microplus. We compared the esterase profile of susceptible and cypermethrin-resistant strains of adult B. microplus and a pyrethroid susceptible reference strain (the Mozzo strain) using polyacrylamide gel electrophoresis and specific staining. The electrophoretic profiles of protein extracts revealed the presence of four regions with esterase activity in the cypermethrin-resistant strain and three of these regions in the susceptible strains. The bands were numbered EST-1 to EST-4 in sequence (starting from the anode) according to their decrease in negative charge. The EST-1A and EST-1B enzymes were detected only in the resistant strain. The inhibition studies with eserine sulfate, copper sulfate, p- p-chloromercuribenzoate (pCMB), malathion and phenylmethylsulfonyl fluoride (PMSF) indicated that the EST-1A and EST-1B enzymes belong to the acetylcholinesterase class and are probably associated with resistance to acaricides in this Brazilian resistant strain of B. microplus
    corecore