33,007 research outputs found

    Low frequency measurements of synchrotron absorbing HII regions and modeling of observed synchrotron emissivity

    Get PDF
    Cosmic rays (CRs) and magnetic fields are dynamically important components in the Galaxy, and their energy densities are comparable to that of the turbulent interstellar gas. The interaction of CRs and Galactic magnetic fields produces synchrotron radiation clearly visible in the radio regime. Detailed measurements of synchrotron radiation averaged over the line-of-sight (LOS), so-called synchrotron emissivities, can be used as a tracer of the CR density and Galactic magnetic field (GMF) strength. Our aim is to model the synchrotron emissivity in the Milky Way using a 3 dimensional dataset instead of LOS-integrated intensity maps on the sky. Using absorbed HII regions we can measure the synchrotron emissivity over a part of the LOS through the Galaxy, changing from a 2 dimensional to a 3 dimensional view. Performing these measurements on a large scale is one of the new applications of the window opened by current low frequency arrays. Using various simple axisymmetric emissivity models and a number of GMF-based emissivity models we can simulate the synchrotron emissivities and compare them to the observed values in the catalog. We present a catalog of low-frequency absorption measurements of HII regions, their distances and electron temperatures, compiled from literature. These data show that the axisymmetric emissivity models are not complex enough, but the GMF-based emissivity models deliver a reasonable fit. These models suggest that the fit can be improved by either an enhanced synchrotron emissivity in the outer reaches of the Milky Way, or an emissivity drop near the Galactic center. State-of-the-art GMF models plus a constant CR density model cannot explain low-frequency absorption measurements, but the fits improved with slight (ad-hoc) adaptations. It is clear that more detailed models are needed, but the current results are very promising.Comment: 14 pages, 9 figures, accepted for publication in A&

    Gravitational collapse of the OMC-1 region

    Get PDF
    We have investigated the global dynamical state of the Integral Shaped Filament in the Orion A cloud using new N2_2H+^+ (1-0) large-scale, IRAM30m observations. Our analysis of its internal gas dynamics reveals the presence of accelerated motions towards the Orion Nebula Cluster, showing a characteristic blue-shifted profile centred at the position of the OMC-1 South region. The properties of these observed gas motions (profile, extension, and magnitude) are consistent with the expected accelerations for the gravitational collapse of the OMC-1 region and explain both the physical and kinematic structure of this cloud.Comment: 5 pages, 2 figures; Accepted by A&

    Twisted partial actions of Hopf algebras

    Full text link
    In this work, the notion of a twisted partial Hopf action is introduced as a unified approach for twisted partial group actions, partial Hopf actions and twisted actions of Hopf algebras. The conditions on partial cocycles are established in order to construct partial crossed products, which are also related to partially cleft extensions of algebras. Examples are elaborated using algebraic groups

    A low-mass stellar companion of the planet host star HD75289

    Full text link
    We report on the detection of a new low-mass stellar companion of HD75289, a G0V star that harbors one known radial-velocity planet (Udry et al. 2000). Comparing an image of 2MASS with an image we obtained with SofI at the ESO 3.58m NTT three years later, we detected a co-moving companion located 21.465+-0.023arcsecs (621+-10AU at 29pc) east of HD75289. A second SofI image taken 10 months later confirmed the common proper motion of HD75289B with its host star. The infrared spectrum and colors of the companion are consistent with an M2 to M5 main-sequence star at the distance of HD75289. No further (sub)stellar companion down to H = 19mag could be detected. With the SofI detection limit we can rule out additional stellar companions beyond 140AU and substellar companions with masses m > 0.050Msun from 400AU up to 2000AU.Comment: accepted in A&
    • …
    corecore