3,846 research outputs found

    Islands of Effective International Adjudication: Constructing an Intellectual Property Rule of Law in the Andean Community

    Get PDF
    The Andean Community - a forty-year-old regional integration pact of small developing countries in South America - is widely viewed as a failure. In this Article, we show that the Andean Community has in fact achieved remarkable success within one part of its legal system. The Andean Tribunal of Justice (ATJ) is the world\u27s third most active international court, with over 1400 rulings issued to date. Over 90% of those rulings concern intellectual property (IP). The ATJ has helped to establish IP as a rule of law island in the Andean Community where national judges, administrative officials, and private parties actively participate in regional litigation and conform their behavior to Andean IP rules. In the vast seas surrounding this island, by contrast, Andean rules remain riddled with exceptions, under-enforced, and often circumvented by domestic actors. We explain how the ATJ helped to construct the IP rule of law island and why litigation has not spilled over to other issue areas regulated by the Andean Community. Our analysis makes four broad contributions to international law and international relations scholarship. First, we adopt and apply a broad definition of an effective rule of law, using qualitative and quantitative analysis to explain how the Andean legal system contributes to changing national decision-making in favor of compliance with Andean rules. Our definition and our explanation of the ATJ\u27s contributions to constructing an effective rule of law provide a model that can be replicated elsewhere. Second, we explain how the Andean legal system has helped domestic IP administrative agencies in the region resist pressures for stronger IP protection from national executives, the United States, and American corporations. We emphasize the importance of these agencies rather than domestic judges as key constituencies that have facilitated the emergence of an effective rule of law for IP. As a result of the agencies\u27 actions, Andean IP rules remain more closely tailored to the economic and social needs of developing counties than do the IP rules of the Community\u27s regional neighbors. Third, the reality that the ATJ is effective, but only within a single issue area, makes the Andean experience of broader theoretical interest. We offer an explanation for why Andean legal integration has not extended beyond IP. But our answer suggests avenues for additional research. We note that Andean IP rules are more specific than other areas of Andean law and that most administrative agencies in the region lack the autonomy needed to serve as compliance partners for ATJ rulings. We also find that, outside of IP, the ATJ is unwilling to issue the sort of purposive interpretations that encourages private parties to invoke Andean rules in litigation. The result is both a lack of demand for and supply of ATJ rulings. Fourth, our study of the Andean legal system provides new evidence to assess three competing theories of effective international adjudication - theories that ascribe effectiveness to the design of international legal systems, to the ability of member states to sanction international judges, and to domestic legal and political factors. We also explore the possibility that rule of law islands may be emerging in other treaty-based systems subject to the jurisdiction of international tribunals

    Emerging infectious disease issues in blood safety.

    Get PDF
    Improvements in donor screening and testing and viral inactivation of plasma derivatives together have resulted in substantial declines in transfusion-transmitted infections over the last two decades. Most recently, nucleic acid testing techniques have been developed to screen blood and plasma donations for evidence of very recent viral infections that could be missed by conventional serologic tests. Nonetheless, the blood supply remains vulnerable to new and reemerging infections. In recent years, numerous infectious agents found worldwide have been identified as potential threats to the blood supply. Several newly discovered hepatitis viruses and agents of transmissible spongiform encephalopathies present unique challenges in assessing possible risks they may pose to the safety of blood and plasma products

    PANIC: the new panoramic NIR camera for Calar Alto

    Full text link
    PANIC is a wide-field NIR camera, which is currently under development for the Calar Alto observatory (CAHA) in Spain. It uses a mosaic of four Hawaii-2RG detectors and covers the spectral range from 0.8-2.5 micron(z to K-band). The field-of-view is 30x30 arcmin. This instrument can be used at the 2.2m telescope (0.45arcsec/pixel, 0.5x0.5 degree FOV) and at the 3.5m telescope (0.23arcsec/pixel, 0.25x0.25 degree FOV). The operating temperature is about 77K, achieved by liquid Nitrogen cooling. The cryogenic optics has three flat folding mirrors with diameters up to 282 mm and nine lenses with diameters between 130 mm and 255 mm. A compact filter unit can carry up to 19 filters distributed over four filter wheels. Narrow band (1%) filters can be used. The instrument has a diameter of 1.1 m and it is about 1 m long. The weight limit of 400 kg at the 2.2m telescope requires a light-weight cryostat design. The aluminium vacuum vessel and radiation shield have wall thicknesses of only 6 mm and 3 mm respectively.Comment: This paper has been presented in the SPIE of Astronomical Telescopes and Instrumentation 2008 in Marseille (France

    Sequential effects of propofol on functional brain activation induced by auditory language processing: an event‐related functional magnetic resonance imaging study

    Get PDF
    Background. We have investigated the effect of propofol on language processing using event‐related functional magnetic resonance imaging (MRI). Methods. Twelve healthy male volunteers underwent MRI scanning at a magnetic field strength of 3 Tesla while performing an auditory language processing task. Functional images were acquired from the perisylvian cortical regions that are associated with auditory and language processing. The experiment consisted of three blocks: awake state (block 1), induction of anaesthesia with 3 mg kg-1 propofol (block 2), and maintenance of anaesthesia with 3 mg kg-1 h-1 propofol (block 3). During each block normal sentences and pseudo‐word sentences were presented in random order. The subjects were instructed to press a button to indicate whether a sentence was made up of pseudo‐words or not. All subjects stopped responding during block two. The data collected before and after the subjects stopped responding during this block were analyzed separately. In addition, propofol plasma concentrations were measured and the effect‐site concentrations of propofol were calculated. Results. During wakefulness, language processing induced brain activation in a widely distributed temporofrontal network. Immediately after unresponsiveness, activation disappeared in frontal areas but persisted in both temporal lobes (block 2 second half, propofol effect‐site concentration: 1.51 µg ml-1). No activation differences related to the task were observed during block 3 (propofol effect‐site concentration: 4.35 µg ml-1). Conclusion. Our findings suggest sequential effects of propofol on auditory language processing networks. Brain activation firstly declines in the frontal lobe before it disappears in the temporal lobe. Br J Anaesth 2004; 92: 641-5

    High-pressure hydrogen testing of single crystal superalloys for advanced rocket engine turbopump turbine blades

    Get PDF
    A screening program to determine the effects of high pressure hydrogen on selected candidate materials for advanced single crystal turbine blade applications is examined. The alloys chosen for the investigation are CM SX-2, CM SX-4C, Rene N-4, and PWA1480. Testing is carried out in hydrogen and helium at 34 MPa and room temperature, with both notched and unnotched single crystal specimens. Results show a significant variation in susceptibility to Hydrogen Environment Embrittlement (HEE) among the four alloys and a marked difference in fracture topography between hydrogen and helium environment specimens

    Time Accurate Unsteady Pressure Loads Simulated for the Space Launch System at a Wind Tunnel Condition

    Get PDF
    Using the Fully Unstructured Three-Dimensional (FUN3D) computational fluid dynamics code, an unsteady, time-accurate flow field about a Space Launch System configuration was simulated at a transonic wind tunnel condition (Mach = 0.9). Delayed detached eddy simulation combined with Reynolds Averaged Naiver-Stokes and a Spallart-Almaras turbulence model were employed for the simulation. Second order accurate time evolution scheme was used to simulate the flow field, with a minimum of 0.2 seconds of simulated time to as much as 1.4 seconds. Data was collected at 480 pressure taps at locations, 139 of which matched a 3% wind tunnel model, tested in the Transonic Dynamic Tunnel (TDT) facility at NASA Langley Research Center. Comparisons between computation and experiment showed agreement within 5% in terms of location for peak RMS levels, and 20% for frequency and magnitude of power spectral densities. Grid resolution and time step sensitivity studies were performed to identify methods for improved accuracy comparisons to wind tunnel data. With limited computational resources, accurate trends for reduced vibratory loads on the vehicle were observed. Exploratory methods such as determining minimized computed errors based on CFL number and sub-iterations, as well as evaluating frequency content of the unsteady pressures and evaluation of oscillatory shock structures were used in this study to enhance computational efficiency and solution accuracy. These techniques enabled development of a set of best practices, for the evaluation of future flight vehicle designs in terms of vibratory loads

    Neutralizing antibody response during acute and chronic hepatitis C virus infection

    Get PDF
    Little is known about the role of Abs in determining the outcome of hepatitis C virus (HCV) infection. By using infectious retroviral pseudotypes bearing HCV glycoproteins, we measured neutralizing Ab (nAb) responses during acute and chronic HCV infection. In seven acutely infected health care workers, only two developed a nAb response that failed to associate with viral clearance. In contrast, the majority of chronically infected patients had nAbs. To determine the kinetics of strain-specific and crossreactive nAb emergence, we studied patient H, the source of the prototype genotype 1a H77 HCV strain. An early weak nAb response, specific for the autologous virus, was detected at seroconversion. However, neutralization of heterologous viruses was detected only between 33 and 111 weeks of infection. We also examined the development of nAbs in 10 chimpanzees infected with H77 clonal virus. No nAb responses were detected in three animals that cleared virus, whereas strain-specific nAbs were detected in six of the seven chronically infected animals after approximately 50 weeks of infection. The delayed appearance of high titer crossreactive nAbs in chronically infected patients suggests that selective mechanism(s) may operate to prevent the appearance of these Abs during acute infection. The long-term persistence of these nAbs in chronically infected patients may regulate viral replication

    Isolated, full-thickness proximal rectus femoris injury in competitive athletes: A systematic review of injury characteristics and return to play

    Get PDF
    BACKGROUND: Characteristics regarding mechanism of injury, management, and return-to-play (RTP) rate and timing are important when treating and counseling athletes with rectus femoris tears. PURPOSE: To systematically review the literature to better understand the prevalence, sporting activity, injury mechanisms, and treatment of patients with rectus femoris injury and to provide prognostic information regarding the rate and timing of RTP. STUDY DESIGN: Systematic review; Level of evidence, 4. METHODS: Following the 2020 PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, we queried PubMed/MEDLINE, Cochrane, OVID, EMBASE, and Google Scholar in March 2022 for studies reporting on athletes sustaining isolated, full-thickness tearing, or bony avulsion injuries to the proximal rectus femoris during sporting activity. Excluded were studies without evidence of full-thickness tearing or avulsion, with athletes sustaining concomitant injuries, or with injuries occurring from nonsporting activities. The percentage of athletes sustaining injuries was calculated based on sport, injury mechanism, and management (nonoperative versus operative). RESULTS: Of 132 studies initially identified, 18 were included, comprising 132 athletes (mean age, 24.0 ± 5.4 years; range, 12-43 years). The most common sporting activities were soccer (70.5%) and rugby (15.2%). The most reported mechanisms of injury were kicking (47.6%) and excessive knee flexion/forced hip extension (42.9%). Avulsion injuries were reported in 86% (n = 114) of athletes. Nonoperative management was reported in 19.7% of athletes, with operative management performed in 80.3%. The mean follow-up time was 21.4 ± 11.4 months (range, 1.5-48 months). The RTP rate was 93.3% (n = 14) in nonoperatively treated and 100% (n = 106) in operatively treated athletes, and the mean RTP time was 11.7 weeks (range, 5.5-15.2 weeks) in nonoperatively treated and 22.1 weeks (range, 14.0-37.6 weeks) in operatively treated athletes. Complications were reported in 7.7% (2/26) of nonoperatively treated and 18% (n = 19/106) of operatively treated athletes. CONCLUSION: Full-thickness proximal rectus femoris injuries occurred most frequently in athletes participating in soccer and rugby secondary to explosive, eccentric contractions involved in kicking and sprinting. Operative management was performed in the majority of cases. Athletes who underwent operative repair had a 100% RTP rate versus 93.3% in athletes treated nonoperatively

    Time-Accurate Unsteady Pressure Loads Simulated for the Space Launch System at Wind Tunnel Conditions

    Get PDF
    A transonic flow field about a Space Launch System (SLS) configuration was simulated with the Fully Unstructured Three-Dimensional (FUN3D) computational fluid dynamics (CFD) code at wind tunnel conditions. Unsteady, time-accurate computations were performed using second-order Delayed Detached Eddy Simulation (DDES) for up to 1.5 physical seconds. The surface pressure time history was collected at 619 locations, 169 of which matched locations on a 2.5 percent wind tunnel model that was tested in the 11 ft. x 11 ft. test section of the NASA Ames Research Center's Unitary Plan Wind Tunnel. Comparisons between computation and experiment showed that the peak surface pressure RMS level occurs behind the forward attach hardware, and good agreement for frequency and power was obtained in this region. Computational domain, grid resolution, and time step sensitivity studies were performed. These included an investigation of pseudo-time sub-iteration convergence. Using these sensitivity studies and experimental data comparisons, a set of best practices to date have been established for FUN3D simulations for SLS launch vehicle analysis. To the author's knowledge, this is the first time DDES has been used in a systematic approach and establish simulation time needed, to analyze unsteady pressure loads on a space launch vehicle such as the NASA SLS
    corecore