22,401 research outputs found

    Tukushi modulates Xnr2, FGF, and and BMP signalling: Regulation of Xenopus Germ Layer Formation

    Get PDF
    BACKGROUND: Cell-cell communication is essential in tissue patterning. In early amphibian development, mesoderm is formed in the blastula-stage embryo through inductive interactions in which vegetal cells act on overlying equatorial cells. Members of the TGF-beta family such as activin B, Vg1, derrière and Xenopus nodal-related proteins (Xnrs) are candidate mesoderm inducing factors, with further activity to induce endoderm of the vegetal region. TGF-beta-like ligands, including BMP, are also responsible for patterning of germ layers. In addition, FGF signaling is essential for mesoderm formation whereas FGF signal inhibition has been implicated in endoderm induction. Clearly, several signaling pathways are coordinated to produce an appropriate developmental output; although intracellular crosstalk is known to integrate multiple pathways, relatively little is known about extracellular coordination. METHODOLOGY/PRINCIPAL FINDINGS: Here, we show that Xenopus Tsukushi (X-TSK), a member of the secreted small leucine rich repeat proteoglycan (SLRP) family, is expressed in ectoderm, endoderm, and the organizer during early development. We have previously reported that X-TSK binds to and inhibits BMP signaling in cooperation with chordin. We now demonstrate two novel interactions: X-TSK binds to and inhibits signaling by FGF8b, in addition to binding to and enhancement of Xnr2 signaling. This signal integration by X-TSK at the extracellular level has an important role in germ layer formation and patterning. Vegetally localized X-TSK potentiates endoderm formation through coordination of BMP, FGF and Xnr2 signaling. In contrast, X-TSK inhibition of FGF-MAPK signaling blocks ventrolateral mesoderm formation, while BMP inhibition enhances organizer formation. These actions of X-TSK are reliant upon its expression in endoderm and dorsal mesoderm, with relative exclusion from ventrolateral mesoderm, in a pattern shaped by FGF signals. CONCLUSIONS/SIGNIFICANCE: Based on our observations, we propose a novel mechanism by which X-TSK refines the field of positional information by integration of multiple pathways in the extracellular space

    Three-dimensional Dirac oscillator in a thermal bath

    Full text link
    The thermal properties of the three-dimensional Dirac oscillator are considered. The canonical partition function is determined, and the high-temperature limit is assessed. The degeneracy of energy levels and their physical implications on the main thermodynamic functions are analyzed, revealing that these functions assume values greater than the one-dimensional case. So that at high temperatures, the limit value of the specific heat is three times bigger.Comment: 9 pages, 4 figures. Text improved, references added. Revised to match accepted version in Europhysics Letters

    Nearest neighbor embedding with different time delays

    Full text link
    A nearest neighbor based selection of time delays for phase space reconstruction is proposed and compared to the standard use of time delayed mutual information. The possibility of using different time delays for consecutive dimensions is considered. A case study of numerically generated solutions of the Lorenz system is used for illustration. The effect of contamination with various levels of additive Gaussian white noise is discussed.Comment: 4 pages, 5 figures, updated to final versio

    Multivariate phase space reconstruction by nearest neighbor embedding with different time delays

    Full text link
    A recently proposed nearest neighbor based selection of time delays for phase space reconstruction is extended to multivariate time series, with an iterative selection of variables and time delays. A case study of numerically generated solutions of the x- and z coordinates of the Lorenz system, and an application to heart rate and respiration data, are used for illustration.Comment: 4 pages, 3 figure

    Treating some solid state problems with the Dirac equation

    Full text link
    The ambiguity involved in the definition of effective-mass Hamiltonians for nonrelativistic models is resolved using the Dirac equation. The multistep approximation is extended for relativistic cases allowing the treatment of arbitrary potential and effective-mass profiles without ordering problems. On the other hand, if the Schrodinger equation is supposed to be used, our relativistic approach demonstrate that both results are coincidents if the BenDaniel and Duke prescription for the kinetic-energy operator is implemented. Applications for semiconductor heterostructures are discussed.Comment: 06 pages, 5 figure

    Regular string-like braneworlds

    Full text link
    In this work, we propose a new class of smooth thick string-like braneworld in six dimensions. The brane exhibits a varying brane-tension and an AdSAdS asymptotic behavior. The brane-core geometry is parametrized by the Bulk cosmological constant, the brane width and by a geometrical deformation parameter. The source satisfies the dominant energy condition for the undeformed solution and has an exotic asymptotic regime for the deformed solution. This scenario provides a normalized massless Kaluza-Klein mode for the scalar, gravitational and gauge sectors. The near-brane geometry allows massive resonant modes at the brane for the ss state and nearby the brane for l=1l=1.Comment: 14 pages, 12 figures. Some modifications to match the published version in EPJ

    Quantum key distribution with higher-order alphabets using spatially-encoded qudits

    Full text link
    We propose and demonstrate a quantum key distribution scheme in higher-order dd-dimensional alphabets using spatial degrees of freedom of photons. Our implementation allows for the transmission of 4.56 bits per sifted photon, while providing improved security: an intercept-resend attack on all photons would induce an error rate of 0.47. Using our system, it should be possible to send more than a byte of information per sifted photon.Comment: 4 pages, 5 figures. Replaced with published versio

    You are What you Eat (and Drink): Identifying Cultural Boundaries by Analyzing Food & Drink Habits in Foursquare

    Full text link
    Food and drink are two of the most basic needs of human beings. However, as society evolved, food and drink became also a strong cultural aspect, being able to describe strong differences among people. Traditional methods used to analyze cross-cultural differences are mainly based on surveys and, for this reason, they are very difficult to represent a significant statistical sample at a global scale. In this paper, we propose a new methodology to identify cultural boundaries and similarities across populations at different scales based on the analysis of Foursquare check-ins. This approach might be useful not only for economic purposes, but also to support existing and novel marketing and social applications. Our methodology consists of the following steps. First, we map food and drink related check-ins extracted from Foursquare into users' cultural preferences. Second, we identify particular individual preferences, such as the taste for a certain type of food or drink, e.g., pizza or sake, as well as temporal habits, such as the time and day of the week when an individual goes to a restaurant or a bar. Third, we show how to analyze this information to assess the cultural distance between two countries, cities or even areas of a city. Fourth, we apply a simple clustering technique, using this cultural distance measure, to draw cultural boundaries across countries, cities and regions.Comment: 10 pages, 10 figures, 1 table. Proceedings of 8th AAAI Intl. Conf. on Weblogs and Social Media (ICWSM 2014
    • …
    corecore