16,526 research outputs found

    Frequency up- and down-conversions in two-mode cavity quantum electrodynamics

    Full text link
    In this letter we present a scheme for the implementation of frequency up- and down-conversion operations in two-mode cavity quantum electrodynamics (QED). This protocol for engineering bilinear two-mode interactions could enlarge perspectives for quantum information manipulation and also be employed for fundamental tests of quantum theory in cavity QED. As an application we show how to generate a two-mode squeezed state in cavity QED (the original entangled state of Einstein-Podolsky-Rosen)

    Regular string-like braneworlds

    Full text link
    In this work, we propose a new class of smooth thick string-like braneworld in six dimensions. The brane exhibits a varying brane-tension and an AdSAdS asymptotic behavior. The brane-core geometry is parametrized by the Bulk cosmological constant, the brane width and by a geometrical deformation parameter. The source satisfies the dominant energy condition for the undeformed solution and has an exotic asymptotic regime for the deformed solution. This scenario provides a normalized massless Kaluza-Klein mode for the scalar, gravitational and gauge sectors. The near-brane geometry allows massive resonant modes at the brane for the ss state and nearby the brane for l=1l=1.Comment: 14 pages, 12 figures. Some modifications to match the published version in EPJ

    Bilinear and quadratic Hamiltonians in two-mode cavity quantum electrodynamics

    Full text link
    In this work we show how to engineer bilinear and quadratic Hamiltonians in cavity quantum electrodynamics (QED) through the interaction of a single driven two-level atom with cavity modes. The validity of the engineered Hamiltonians is numerically analyzed even considering the effects of both dissipative mechanisms, the cavity field and the atom. The present scheme can be used, in both optical and microwave regimes, for quantum state preparation, the implementation of quantum logical operations, and fundamental tests of quantum theory.Comment: 11 pages, 3 figure

    Significance of Ghost Orbit Bifurcations in Semiclassical Spectra

    Full text link
    Gutzwiller's trace formula for the semiclassical density of states in a chaotic system diverges near bifurcations of periodic orbits, where it must be replaced with uniform approximations. It is well known that, when applying these approximations, complex predecessors of orbits created in the bifurcation ("ghost orbits") can produce pronounced signatures in the semiclassical spectra in the vicinity of the bifurcation. It is the purpose of this paper to demonstrate that these ghost orbits themselves can undergo bifurcations, resulting in complex, nongeneric bifurcation scenarios. We do so by studying an example taken from the Diamagnetic Kepler Problem, viz. the period quadrupling of the balloon orbit. By application of normal form theory we construct an analytic description of the complete bifurcation scenario, which is then used to calculate the pertinent uniform approximation. The ghost orbit bifurcation turns out to produce signatures in the semiclassical spectrum in much the same way as a bifurcation of real orbits would.Comment: 20 pages, 6 figures, LATEX (IOP style), submitted to J. Phys.

    Nonadiabatic coherent evolution of two-level systems under spontaneous decay

    Full text link
    In this paper we extend current perspectives in engineering reservoirs by producing a time-dependent master equation leading to a nonstationary superposition equilibrium state that can be nonadiabatically controlled by the system-reservoir parameters. Working with an ion trapped inside a nonindeal cavity we first engineer effective Hamiltonians that couple the electronic states of the ion with the cavity mode. Subsequently, two classes of decoherence-free evolution of the superposition of the ground and decaying excited levels are achieved: those with time-dependent azimuthal or polar angle. As an application, we generalise the purpose of an earlier study [Phys. Rev. Lett. 96, 150403 (2006)], showing how to observe the geometric phases acquired by the protected nonstationary states even under a nonadiabatic evolution.Comment: 5 pages, no figure

    Order-Parameter Flow in the SK Spin-Glass II: Inclusion of Microscopic Memory Effects

    Full text link
    We develop further a recent dynamical replica theory to describe the dynamics of the Sherrington-Kirkpatrick spin-glass in terms of closed evolution equations for macroscopic order parameters. We show how microscopic memory effects can be included in the formalism through the introduction of a dynamic order parameter function: the joint spin-field distribution. The resulting formalism describes very accurately the relaxation phenomena observed in numerical simulations, including the typical overall slowing down of the flow that was missed by the previous simple two-parameter theory. The advanced dynamical replica theory is either exact or a very good approximation.Comment: same as original, but this one is TeXabl

    On the Stability of the Mean-Field Glass Broken Phase under Non-Hamiltonian Perturbations

    Get PDF
    We study the dynamics of the SK model modified by a small non-hamiltonian perturbation. We study aging, and we find that on the time scales investigated by our numerical simulations it survives a small perturbation (and is destroyed by a large one). If we assume we are observing a transient behavior the scaling of correlation times versus the asymmetry strength is not compatible with the one expected for the spherical model. We discuss the slow power law decay of observable quantities to equilibrium, and we show that for small perturbations power like decay is preserved. We also discuss the asymptotically large time region on small lattices.Comment: 34 page
    corecore