904 research outputs found

    Low Temperature Neutron Diffraction Study of MnTe

    Full text link
    Investigation of transport and magnetic properties of MnTe at low temperatures sInvestigation of transport and magnetic properties of MnTe at low temperatures showed anomalies like negative coefficient of resistance below 100K and a sharp rise in susceptibility at around 83K similar to a ferromagnetic transition. Low temperature powder neutron diffraction experiments were therefore carried out to understand the underlying phenomena responsible for such anomalous behavior. Our study indicates that the rise in susceptibility at low temperatures is due to strengthening of ferromagnetic interaction within the plane over the inter plane antiferromagnetic interactions.Comment: Appearing in J. Magn. Magn. Mate

    Computer simulations of hard pear-shaped particles

    Get PDF
    We report results obtained from Monte Carlo simulations investi- gating mesophase formation in two model systems of hard pear-shaped particles. The first model considered is a hard variant of the trun- cated Stone-Expansion model previously shown to form nematic and smectic mesophases when embedded within a 12-6 Gay-Berne-like po- tential [1]. When stripped of its attractive interactions, however, this system is found to lose its liquid crystalline phases. For particles of length to breadth ratio k = 3, glassy behaviour is seen at high pressures, whereas for k = 5 several bi-layer-like domains are seen, with high intradomain order but little interdomain orientational correlation. For the second model, which uses a parametric shape parameter based on the generalised Gay-Berne formalism, results are presented for particles with elongation k = 3; 4 and 5. Here, the systems with k = 3 and 4 fail to display orientationally ordered phases, but that with k = 5 shows isotropic, nematic and, unusually for a hard-particle model, interdigitated smectic A2 phases.</p

    Quasiparticle vanishing driven by geometrical frustration

    Full text link
    We investigate the single hole dynamics in the triangular t-J model. We study the structure of the hole spectral function, assuming the existence of a 120 magnetic Neel order. Within the self-consistent Born approximation (SCBA) there is a strong momentum and t sign dependence of the spectra, related to the underlying magnetic structure and the particle-hole asymmetry of the model. For positive t, and in the strong coupling regime, we find that the low energy quasiparticle excitations vanish outside the neighbourhood of the magnetic Goldstone modes; while for negative t the quasiparticle excitations are always well defined. In the latter, we also find resonances of magnetic origin whose energies scale as (J/t)^2/3 and can be identified with string excitations. We argue that this complex structure of the spectra is due to the subtle interplay between magnon-assisted and free hopping mechanisms. Our predictions are supported by an excellent agreement between the SCBA and the exact results on finite size clusters. We conclude that the conventional quasiparticle picture can be broken by the effect of geometrical magnetic frustration.Comment: 6 pages, 7 figures. Published versio

    Anthropogenic Space Weather

    Full text link
    Anthropogenic effects on the space environment started in the late 19th century and reached their peak in the 1960s when high-altitude nuclear explosions were carried out by the USA and the Soviet Union. These explosions created artificial radiation belts near Earth that resulted in major damages to several satellites. Another, unexpected impact of the high-altitude nuclear tests was the electromagnetic pulse (EMP) that can have devastating effects over a large geographic area (as large as the continental United States). Other anthropogenic impacts on the space environment include chemical release ex- periments, high-frequency wave heating of the ionosphere and the interaction of VLF waves with the radiation belts. This paper reviews the fundamental physical process behind these phenomena and discusses the observations of their impacts.Comment: 71 pages, 35 figure

    Effects of a nanoscopic filler on the structure and dynamics of a simulated polymer melt and the relationship to ultra-thin films

    Get PDF
    We perform molecular dynamics simulations of an idealized polymer melt surrounding a nanoscopic filler particle to probe the effects of a filler on the local melt structure and dynamics. We show that the glass transition temperature TgT_g of the melt can be shifted to either higher or lower temperatures by appropriately tuning the interactions between polymer and filler. A gradual change of the polymer dynamics approaching the filler surface causes the change in the glass transition. We also find that while the bulk structure of the polymers changes little, the polymers close to the surface tend to be elongated and flattened, independent of the type of interaction we study. Consequently, the dynamics appear strongly influenced by the interactions, while the melt structure is only altered by the geometric constraints imposed by the presence of the filler. Our findings show a strong similarity to those obtained for ultra-thin polymer films (thickness 100\lesssim 100 nm) suggesting that both ultra-thin films and filled-polymer systems might be understood in the same context

    Graviton production from extra dimensions

    Get PDF
    Graviton production due to collapsing extra dimensions is studied. The momenta lying in the extra dimensions are taken into account. A DD-dimensional background is matched to an effectively four-dimensional standard radiation dominated universe. Using observational constraints on the present gravitational wave spectrum, a bound on the maximal temperature at the beginning of the radiation era is derived. This expression depends on the number of extra dimensions, as well as on the DD-dimensional Planck mass. Furthermore, it is found that the extra dimensions have to be large.Comment: LaTeX file, 14 pages, 4 figure

    Phase Behavior of Bent-Core Molecules

    Full text link
    Recently, a new class of smectic liquid crystal phases (SmCP phases) characterized by the spontaneous formation of macroscopic chiral domains from achiral bent-core molecules has been discovered. We have carried out Monte Carlo simulations of a minimal hard spherocylinder dimer model to investigate the role of excluded volume interations in determining the phase behavior of bent-core materials and to probe the molecular origins of polar and chiral symmetry breaking. We present the phase diagram as a function of pressure or density and dimer opening angle ψ\psi. With decreasing ψ\psi, a transition from a nonpolar to a polar smectic phase is observed near ψ=167\psi = 167^{\circ}, and the nematic phase becomes thermodynamically unstable for ψ<135\psi < 135^{\circ}. No chiral smectic or biaxial nematic phases were found.Comment: 4 pages Revtex, 3 eps figures (included

    Sedimentation record in the Konkan-Kerala Basin: implications for the evolution of the Western Ghats and the Western Indian passive margin

    Get PDF
    The Konkan and Kerala Basins constitute a major depocentre for sediment from the onshore hinterland of Western India and as such provide a valuable record of the timing and magnitude of Cenozoic denudation along the continental margin. This paper presents an analysis of sedimentation in the Konkan-Kerala Basin, coupledwith a mass balance study, and numerical modelling of flexural responses to onshore denudational unloading and o¡shore sediment loading in order to test competing conceptual models for the development of high-elevation passive margins. The Konkan-Kerala Basin contains an estimated 109,000 km&lt;sup&gt;3&lt;/sup&gt;; of Cenozoic clastic sediment, a volume difficult to reconcile with the denudation of a downwarped rift flank onshore, and more consistent with denudation of an elevated rift flank. We infer from modelling of the isostatic response of the lithosphere to sediment loading offshore and denudation onshore that flexure is an important component in the development of the Western Indian Margin.There is evidence for two major pulses in sedimentation: an early phase in the Palaeocene, and a second beginning in the Pliocene. The Palaeocene increase in sedimentation can be interpreted in terms of a denudational response to the rifting between India and the Seychelles, whereas the mechanism responsible for the Pliocene pulse is more enigmatic

    Orientational order in dipolar fluids consisting of nonspherical hard particles

    Full text link
    We investigate fluids of dipolar hard particles by a certain variant of density-functional theory. The proper treatment of the long range of the dipolar interactions yields a contribution to the free energy which favors ferromagnetic order. This corrects previous theoretical analyses. We determine phase diagrams for dipolar ellipsoids and spherocylinders as a function of the aspect ratio of the particles and their dipole moment. In the nonpolar limit the results for the phase boundary between the isotropic and nematic phase agree well with simulation data. Adding a longitudinal dipole moment favors the nematic phase. For oblate or slightly elongated particles we find a ferromagnetic liquid phase, which has also been detected in computer simulations of fluids consisting of spherical dipolar particles. The detailed structure of the phase diagram and its evolution upon changing the aspect ratio are discussed in detail.Comment: 35 pages LaTeX with epsf style, 11 figures in eps format, submitted to Phys. Rev.

    Threshold criterion for wetting at the triple point

    Full text link
    Grand canonical simulations are used to calculate adsorption isotherms of various classical gases on alkali metal and Mg surfaces. Ab initio adsorption potentials and Lennard-Jones gas-gas interactions are used. Depending on the system, the resulting behavior can be nonwetting for all temperatures studied, complete wetting, or (in the intermediate case) exhibit a wetting transition. An unusual variety of wetting transitions at the triple point is found in the case of a specific adsorption potential of intermediate strength. The general threshold for wetting near the triple point is found to be close to that predicted with a heuristic model of Cheng et al. This same conclusion was drawn in a recent experimental and simulation study of Ar on CO_2 by Mistura et al. These results imply that a dimensionless wetting parameter w is useful for predicting whether wetting behavior is present at and above the triple temperature. The nonwetting/wetting crossover value found here is w circa 3.3.Comment: 15 pages, 8 figure
    corecore