1,164 research outputs found
A guanosine 5′-triphosphate-dependent protein kinase is localized in the outer envelope membrane of pea chloroplasts
A guanosine 5-triphosphate (GTP)-dependent protein kinase was detected in preparations of outer chloroplast envelope membranes of pea (Pisum sativum L.) chloroplasts. The protein-kinase activity was capable of phosphorylating several envelope-membrane proteins. The major phosphorylated products were 23- and 32.5-kilo-dalton proteins of the outer envelope membrane. Several other envelope proteins were labeled to a lesser extent. Following acid hydrolysis of the labeled proteins, most of the label was detected as phosphoserine with only minor amounts detected as phosphothreonine. Several criteria were used to distinguish the GTP-dependent protein kinase from an ATP-dependent kinase also present in the outer envelope membrane. The ATP-dependent kinase phosphorylated a very different set of envelope-membrane proteins. Heparin inhibited the GTP-dependent kinase but had little effect upon the ATP-dependent enzyme. The GTP-dependent enzyme accepted phosvitin as an external protein substrate whereas the ATP-dependent enzyme did not. The outer membrane of the chloroplast envelope also contained a phosphotransferase capable of transferring labeled phosphate from [-32P]GTP to ADP to yield (-32P]ATP. Consequently, addition of ADP to a GTP-dependent protein-kinase assay resulted in a switch in the pattern of labeled products from that seen with GTP to that typically seen with ATP
Lattice-switch Monte Carlo
We present a Monte Carlo method for the direct evaluation of the difference
between the free energies of two crystal structures. The method is built on a
lattice-switch transformation that maps a configuration of one structure onto a
candidate configuration of the other by `switching' one set of lattice vectors
for the other, while keeping the displacements with respect to the lattice
sites constant. The sampling of the displacement configurations is biased,
multicanonically, to favor paths leading to `gateway' arrangements for which
the Monte Carlo switch to the candidate configuration will be accepted. The
configurations of both structures can then be efficiently sampled in a single
process, and the difference between their free energies evaluated from their
measured probabilities. We explore and exploit the method in the context of
extensive studies of systems of hard spheres. We show that the efficiency of
the method is controlled by the extent to which the switch conserves correlated
microstructure. We also show how, microscopically, the procedure works: the
system finds gateway arrangements which fulfill the sampling bias
intelligently. We establish, with high precision, the differences between the
free energies of the two close packed structures (fcc and hcp) in both the
constant density and the constant pressure ensembles.Comment: 34 pages, 9 figures, RevTeX. To appear in Phys. Rev.
On merging the fields of neural networks and adaptive data structures to yield new pattern recognition methodologies
The aim of this talk is to explain a pioneering exploratory research endeavour that attempts to merge two completely different fields in Computer Science so as to yield very fascinating results. These are the well-established fields of Neural Networks (NNs) and Adaptive Data Structures (ADS) respectively. The field of NNs deals with the training and learning capabilities of a large number of neurons, each possessing minimal computational properties. On the other hand, the field of ADS concerns designing, implementing and analyzing data structures which adaptively change with time so as to optimize some access criteria. In this talk, we shall demonstrate how these fields can be merged, so that the neural elements are themselves linked together using a data structure. This structure can be a singly-linked or doubly-linked list, or even a Binary Search Tree (BST). While the results themselves are quite generic, in particular, we shall, as a prima facie case, present the results in which a Self-Organizing Map (SOM) with an underlying BST structure can be adaptively re-structured using conditional rotations. These rotations on the nodes of the tree are local and are performed in constant time, guaranteeing a decrease in the Weighted Path Length of the entire tree. As a result, the algorithm, referred to as the Tree-based Topology-Oriented SOM with Conditional Rotations (TTO-CONROT), converges in such a manner that the neurons are ultimately placed in the input space so as to represent its stochastic distribution. Besides, the neighborhood properties of the neurons suit the best BST that represents the data
Structural and superconducting transition in selenium under high pressures
First-principles calculations are performed for electronic structures of two
high pressure phases of solid selenium, -Po and bcc.
Our calculation reproduces well the pressure-induced phase transition from
-Po to bcc observed in selenium.
The calculated transition pressure is 30 GPa lower than the observed one, but
the calculated pressure dependence of the lattice parameters agrees fairly well
with the observations in a wide range of pressure.
We estimate the superconducting transition temperature of both
the -Po and the bcc phases by calculating the phonon dispersion and the
electron-phonon interaction on the basis of density-functional perturbation
theory.
The calculated shows a characteristic pressure dependence, i.e.
it is rather pressure independent in the -Po phase, shows a
discontinuous jump at the transition from -Po to bcc, and then decreases
rapidly with increasing pressure in the bcc phase.Comment: 8 pages, 11 figure
Quantum-critical pairing with varying exponents
We analyse the onset temperature T_p for the pairing in cuprate
superconductors at small doping, when tendency towards antiferromagnetism is
strong. We consider the model of Moon and Sachdev (MS), which assumes that
electron and hole pockets survive in a paramagnetic phase. Within this model,
the pairing between fermions is mediated by a gauge boson, whose propagator
remains massless in a paramagnet. We relate the MS model to a generic
\gamma-model of quantum-critical pairing with the pairing kernel \lambda
(\Omega) \propto 1/\Omega^{\gamma}. We show that, over some range of
parameters, the MS model is equivalent to the \gamma-model with \gamma =1/3
(\lambda (\Omega) \propto \Omega^{-1/3}). We find, however, that the parameter
range where this analogy works is bounded on both ends. At larger deviations
from a magnetic phase, the MS model becomes equivalent to the \gamma-model with
varying \gamma >1/3, whose value depends on the distance to a magnetic
transition and approaches \gamma =1 deep in a paramagnetic phase. Very near the
transition, the MS model becomes equivalent to the \gamma-model with varying
\gamma <1/3. Right at the magnetic QCP, the MS model is equivalent to the
\gamma-model with \gamma =0+ (\lambda (\Omega) \propto \log \Omega), which is
the model for color superconductivity. Using this analogy, we verified the
formula for T_c derived for color superconductivity.Comment: 10 pages, 8 figures, submitted to JLTP for a focused issue on Quantum
Phase Transition
Methods to Determine Neutrino Flux at Low Energies:Investigation of the Low Method
We investigate the "low-" method (developed by the CCFR/NUTEV
collaborations) to determine the neutrino flux in a wide band neutrino beam at
very low energies, a region of interest to neutrino oscillations experiments.
Events with low hadronic final state energy (of 1, 2 and 5 GeV)
were used by the MINOS collaboration to determine the neutrino flux in their
measurements of neutrino () and antineutrino (\nub_\mu) total cross
sections. The lowest energy for which the method was used in MINOS is
3.5 GeV, and the lowest \nub_\mu energy is 6 GeV. At these energies, the
cross sections are dominated by inelastic processes. We investigate the
application of the method to determine the neutrino flux for ,
\nub_\mu energies as low as 0.7 GeV where the cross sections are dominated by
quasielastic scattering and (1232) resonance production. We find that
the method can be extended to low energies by using values of 0.25
and 0.50 GeV, which is feasible in fully active neutrino detectors such as
MINERvA.Comment: 25 pages, 32 figures, to be published in European Physics Journal
Bulk Viscous LRS Biachi-I Universe with variable and decaying
The present study deals with spatially homogeneous and totally anisotropic
locally rotationally symmetric (LRS) Bianchi type I cosmological model with
variable and in presence of imperfect fluid. To get the
deterministic model of Universe, we assume that the expansion in the
model is proportional to shear . This condition leads to , where ,\; are metric potential. The cosmological constant
is found to be decreasing function of time and it approaches a small
positive value at late time which is supported by recent Supernovae Ia (SN Ia)
observations. Also it is evident that the distance modulus curve of derived
model matches with observations perfectly.Comment: 11 pages, 4 figures and 1 table, Accepted for publication in
Astrophysics and Space Scienc
Radiating dipoles in photonic crystals
The radiation dynamics of a dipole antenna embedded in a Photonic Crystal are
modeled by an initially excited harmonic oscillator coupled to a non--Markovian
bath of harmonic oscillators representing the colored electromagnetic vacuum
within the crystal. Realistic coupling constants based on the natural modes of
the Photonic Crystal, i.e., Bloch waves and their associated dispersion
relation, are derived. For simple model systems, well-known results such as
decay times and emission spectra are reproduced. This approach enables direct
incorporation of realistic band structure computations into studies of
radiative emission from atoms and molecules within photonic crystals. We
therefore provide a predictive and interpretative tool for experiments in both
the microwave and optical regimes.Comment: Phys. Rev. E, accepte
Charged-current neutrino-208Pb reactions
We present theoretical results on the non flux-averaged
and
reaction cross sections, obtained within the charge-exchange
Random-Phase-Approximation. A detailed knowledge of these cross sections is
important in different contexts. In particular, it is necessary to assess the
possibility of using lead as a detector in future experiments on supernova
neutrinos, such as OMNIS and LAND, and eventually detect neutrino oscillation
signals by exploiting the spectroscopic properties of . We discuss
the present status on the theoretical predictions of the reaction cross
sections.Comment: 5 pages, latex, 3 figures. added discussion on present status,
Submitted to Phys.Rev.
- …
