9 research outputs found

    Inducing CTLA-4-Dependent Immune Regulation by Selective CD28 Blockade Promotes Regulatory T Cells in Organ Transplantation

    No full text
    Transplantation is the treatment of choice for patients with end-stage organ failure. Its success is limited by side effects of immunosuppressive drugs, such as inhibitors of the calcineurin pathway that prevent rejection by reducing synthesis of interleukin-2 by T cells. Moreover, none of the existing drugs efficiently prevent the late development of chronic rejection. Blocking the CD28-mediated T cell costimulation pathway is a non toxic alternative immunosuppression strategy that is currently achieved by blockade of CD80/86, the counter receptors for CD28 on antigen-presenting cells.. However interaction of CD80/86 with CTLA-4 is required for immune regulation. Therefore CD28 blockade, instead of CD80/86 blockade, might preserve regulatory signals mediated by CTLA-4 and favor immune regulation. By using monovalent antibodies, we identified true CD28 antagonists inducing a CTLA-4-dependent decreased T cell function compatible with regulatory T cell (Treg) suppression. In transplantation experiments in primates, blocking CD28 augmented intragraft and peripheral blood regulatory T cells, induced molecular signatures of immune regulation and prevented graft rejection and vasculopathy in synergy with calcineurin inhibition. These findings suggest that targeting costimulation blockade at CD28 favors CTLA-4-dependent immune regulation and promotes allograft survival
    corecore