8 research outputs found

    1492-P: IL-8/CXCL8 May Identify a New Type 1 Diabetes Endotype

    No full text

    Pre-vaccination glucose time in range correlates with antibody response to SARS-CoV-2 vaccine in type 1 diabetes.

    Get PDF
    CONTEXT: Poor glucose control has been associated with increased mortality in COVID-19 patients with type 1 diabetes (T1D). OBJECTIVE: To assess the effect of pre-vaccination glucose control on antibody response to the SARS-CoV-2 vaccine BNT162b2 in T1D. DESIGN AND METHODS: We studied 26 patients with T1D scheduled to receive two doses, 21 days apart, of BNT162b2, followed prospectively for six months with regular evaluation of SARS-CoV-2 antibodies and glucose control. IgG to spike glycoprotein were assessed by ELISA, and serum neutralization by a live SARS-CoV-2 assay (Vero E6 cells system). HbA1c and continuous glucose monitoring (CGM), including time in range (TIR) and above range (TAR) were collected. MAIN OUTCOME MEASURES: The primary exposure and outcome measures were pre-vaccination glucose control, and antibody response after vaccination, respectively. RESULTS: Pre-vaccination HbA1c was unrelated to post-vaccine spike IgG (r = -0.33, p = 0.14). Of note, the CGM profile collected during the two weeks preceding BNT162b2 administration, correlated with post-vaccine IgG response (TIR: r = 0.75; p = 0.02; TAR: r = -0.81; p = 0.008). Patients meeting the recommended pre-vaccination glucose targets of TIR (≥70%) and TAR (≤25%), developed stronger neutralizing antibody titres (p < 0.0001 and p = 0.008, respectively), regardless of HbA1c. Glucose control along the study timeframe was also associated with IgG response during follow-up (TIR: r = 0.93, p < 0.0001; TAR: r = -0.84, p < 0.0001). CONCLUSIONS: In T1D, glucose profile during the two weeks preceding vaccination is associated with stronger spike antibody binding and neutralization, highlighting a role for well-controlled blood glucose in vaccination efficacy

    Clonal evaluation of prostate cancer molecular heterogeneity in biopsy samples by dual immunohistochemistry and dual RNA in situ hybridization

    No full text
    Prostate cancer is frequently multifocal. Although there may be morphological variation, the genetic underpinnings of each tumor are not clearly understood. To assess the inter and intra tumor molecular heterogeneity in prostate biopsy samples, we developed a combined immunohistochemistry and RNA in situ hybridization method for the simultaneous evaluation of ERG, SPINK1, ETV1, and ETV4. Screening of 601 biopsy cores from 120 consecutive patients revealed multiple alterations in a mutually exclusive manner in 37% of patients, suggesting multifocal tumors with considerable genetic differences. Furthermore, the incidence of molecular heterogeneity was higher in African Americans patients compared with Caucasian American patients. About 47% of the biopsy cores with discontinuous tumor foci showed clonal differences with distinct molecular aberrations. ERG positivity occurred in low-grade cancer, whereas ETV4 expression was observed mostly in high-grade cancer. Further studies revealed correlation between the incidence of molecular markers and clinical and pathologic findings, suggesting potential implications for diagnostic pathology practice, such as defining dominant tumor nodules and discriminating juxtaposed but molecularly different tumors of different grade patterns

    Autoantibody and T cell responses to oxidative post-translationally modified insulin neoantigenic peptides in type 1 diabetes

    No full text
    Aims/hypothesis: Antibodies specific to oxidative post-translational modifications (oxPTM) of insulin (oxPTM-INS) are present in most individuals with type 1 diabetes, even before the clinical onset. However, the antigenic determinants of such response are still unknown. In this study, we investigated the antibody response to oxPTM-INS neoepitope peptides (oxPTM-INSPs) and evaluated their ability to stimulate humoral and T cell responses in type 1 diabetes. We also assessed the concordance between antibody and T cell responses to the oxPTM-INS neoantigenic peptides. Methods: oxPTM-INS was generated by exposing insulin to various reactive oxidants. The insulin fragments resulting from oxPTM were fractionated by size-exclusion chromatography further to ELISA and LC-MS/MS analysis to identify the oxidised peptide neoepitopes. Immunogenic peptide candidates were produced and then modified in house or designed to incorporate in silico-oxidised amino acids during synthesis. Autoantibodies to the oxPTM-INSPs were tested by ELISA using sera from 63 participants with new-onset type 1 diabetes and 30 control participants. An additional 18 fresh blood samples from participants with recently diagnosed type 1 diabetes, five with established disease, and from 11 control participants were used to evaluate, in parallel, CD4+ and CD8+ T cell activation by oxPTM-INSPs. Results: We observed antibody and T cell responses to three out of six LC-MS/MS-identified insulin peptide candidates: A:12–21 (SLYQLENYCN, native insulin peptide 3 [Nt-INSP-3]), B:11–30 (LVEALYLVCGERGFFYTPKT, Nt-INSP-4) and B:21–30 (ERGFFYTPKT, Nt-INSP-6). For Nt-INSP-4 and Nt-INSP-6, serum antibody binding was stronger in type 1 diabetes compared with healthy control participants (p≤0.02), with oxidised forms of ERGFFYTPKT, oxPTM-INSP-6 conferring the highest antibody binding (83% binders to peptide modified in house by hydroxyl radical [●OH] and >88% to in silico-oxidised peptide; p≤0.001 vs control participants). Nt-INSP-4 induced the strongest T cell stimulation in type 1 diabetes compared with control participants for both CD4+ (p<0.001) and CD8+ (p=0.049). CD4+ response to oxPTM-INSP-6 was also commoner in type 1 diabetes than in control participants (66.7% vs 27.3%; p=0.039). Among individuals with type 1 diabetes, the CD4+ response to oxPTM-INSP-6 was more frequent than to Nt-INSP-6 (66.7% vs 27.8%; p=0.045). Overall, 44.4% of patients showed a concordant autoimmune response to oxPTM-INSP involving simultaneously CD4+ and CD8+ T cells and autoantibodies. Conclusions/interpretation: Our findings support the concept that oxidative stress, and neoantigenic epitopes of insulin, may be involved in the immunopathogenesis of type 1 diabetes. Graphical abstract: [Figure not available: see fulltext.

    Development of a clinical risk score to predict death in patients with COVID-19

    No full text
    Objective: To build a clinical risk score to aid risk stratification among hospitalised COVID-19 patients. Methods: The score was built using data of 417 consecutive COVID-19 in patients from Kuwait. Risk factors for COVID-19 mortality were identified by multivariate logistic regressions and assigned weighted points proportional to their beta coefficient values. A final score was obtained for each patient and tested against death to calculate an Receiver-operating characteristic curve. Youden's index was used to determine the cut-off value for death prediction risk. The score was internally validated using another COVID-19 Kuwaiti-patient cohort of 923 patients. External validation was carried out using 178 patients from the Italian CoViDiab cohort. Results: Deceased COVID-19 patients more likely showed glucose levels of 7.0–11.1&nbsp;mmol/L (34.4%, p&nbsp;&lt;&nbsp;0.0001) or &gt;11.1&nbsp;mmol/L (44.3%, p&nbsp;&lt;&nbsp;0.0001), and comorbidities such as diabetes and hypertension compared to those who survived (39.3% vs. 20.4% [p&nbsp;=&nbsp;0.0027] and 45.9% vs. 26.6% [p&nbsp;=&nbsp;0.0036], respectively). The risk factors for in-hospital mortality in the final model were gender, nationality, asthma, and glucose categories (&lt;5.0, 5.5–6.9, 7.0–11.1, or 11.1&nbsp;&gt;&nbsp;mmol/L). A score of ≥5.5 points predicted death with 75% sensitivity and 86.3% specificity (area under the curve (AUC) 0.901). Internal validation resulted in an AUC of 0.826, and external validation showed an AUC of 0.687. Conclusion: This clinical risk score was built with easy-to-collect data and had good probability of predicting in-hospital death among COVID-19 patients

    Autoantibody and T cell responses to oxidative post-translationally modified insulin neoantigenic peptides in type 1 diabetes

    Get PDF
    Aims/hypothesis Antibodies specific to oxidative post-translational modifications (oxPTM) of insulin (oxPTM-INS) are present in most individuals with type 1 diabetes, even before the clinical onset. However, the antigenic determinants of such response are still unknown. In this study, we investigated the antibody response to oxPTM-INS neoepitope peptides (oxPTM-INSPs) and evaluated their ability to stimulate humoral and T cell responses in type 1 diabetes. We also assessed the concordance between antibody and T cell responses to the oxPTM-INS neoantigenic peptides. Methods oxPTM-INS was generated by exposing insulin to various reactive oxidants. The insulin fragments resulting from oxPTM were fractionated by size-exclusion chromatography further to ELISA and LC-MS/MS analysis to identify the oxidised peptide neoepitopes. Immunogenic peptide candidates were produced and then modified in house or designed to incorporate in silico-oxidised amino acids during synthesis. Autoantibodies to the oxPTM-INSPs were tested by ELISA using sera from 63 participants with new-onset type 1 diabetes and 30 control participants. An additional 18 fresh blood samples from participants with recently diagnosed type 1 diabetes, five with established disease, and from 11 control participants were used to evaluate, in parallel, CD4(+) and CD8(+) T cell activation by oxPTM-INSPs. Results We observed antibody and T cell responses to three out of six LC-MS/MS-identified insulin peptide candidates: A:12-21 (SLYQLENYCN, native insulin peptide 3 [Nt-INSP-3]), B:11-30 (LVEALYLVCGERGFFYTPKT, Nt-INSP-4) and B:21-30 (ERGFFYTPKT, Nt-INSP-6). For Nt-INSP-4 and Nt-INSP-6, serum antibody binding was stronger in type 1 diabetes compared with healthy control participants (p &amp;lt;= 0.02), with oxidised forms of ERGFFYTPKT, oxPTM-INSP-6 conferring the highest antibody binding (83% binders to peptide modified in house by hydroxyl radical [(OH)-O-?] and &amp;gt;88% to in silico-oxidised peptide; p &amp;lt;= 0.001 vs control participants). Nt-INSP-4 induced the strongest T cell stimulation in type 1 diabetes compared with control participants for both CD4(+) (p&amp;lt;0.001) and CD8(+) (p=0.049). CD4(+) response to oxPTM-INSP-6 was also commoner in type 1 diabetes than in control participants (66.7% vs 27.3%; p=0.039). Among individuals with type 1 diabetes, the CD4(+) response to oxPTM-INSP-6 was more frequent than to Nt-INSP-6 (66.7% vs 27.8%; p=0.045). Overall, 44.4% of patients showed a concordant autoimmune response to oxPTM-INSP involving simultaneously CD4(+) and CD8(+) T cells and autoantibodies. Conclusions/interpretation Our findings support the concept that oxidative stress, and neoantigenic epitopes of insulin, may be involved in the immunopathogenesis of type 1 diabetes.Funding Agencies|JDRF [1-SRA-2017-512-Q-R]; European Foundation for the Study of Diabetes Future Leaders Mentorship Programme for Clinical Diabetologists 2018; Italian Ministry of Health [GR-201812365982]; AstraZeneca; Ordine dei Medici ed Odontoiatri di Salerno (OMCeO Salerno); European Foundation for the Study of Diabetes/Novo Nordisk Programme for Diabetes Research in Europe 2020; Fondazione Italiana Sclerosi Multipla [2020/R/13]; Progetti di Rilevante Interesse Nazionale [202077EYN7]</p
    corecore