245 research outputs found

    Verification of Agent-Based Artifact Systems

    Full text link
    Artifact systems are a novel paradigm for specifying and implementing business processes described in terms of interacting modules called artifacts. Artifacts consist of data and lifecycles, accounting respectively for the relational structure of the artifacts' states and their possible evolutions over time. In this paper we put forward artifact-centric multi-agent systems, a novel formalisation of artifact systems in the context of multi-agent systems operating on them. Differently from the usual process-based models of services, the semantics we give explicitly accounts for the data structures on which artifact systems are defined. We study the model checking problem for artifact-centric multi-agent systems against specifications written in a quantified version of temporal-epistemic logic expressing the knowledge of the agents in the exchange. We begin by noting that the problem is undecidable in general. We then identify two noteworthy restrictions, one syntactical and one semantical, that enable us to find bisimilar finite abstractions and therefore reduce the model checking problem to the instance on finite models. Under these assumptions we show that the model checking problem for these systems is EXPSPACE-complete. We then introduce artifact-centric programs, compact and declarative representations of the programs governing both the artifact system and the agents. We show that, while these in principle generate infinite-state systems, under natural conditions their verification problem can be solved on finite abstractions that can be effectively computed from the programs. Finally we exemplify the theoretical results of the paper through a mainstream procurement scenario from the artifact systems literature

    MCMAS-SLK: A Model Checker for the Verification of Strategy Logic Specifications

    Get PDF
    We introduce MCMAS-SLK, a BDD-based model checker for the verification of systems against specifications expressed in a novel, epistemic variant of strategy logic. We give syntax and semantics of the specification language and introduce a labelling algorithm for epistemic and strategy logic modalities. We provide details of the checker which can also be used for synthesising agents' strategies so that a specification is satisfied by the system. We evaluate the efficiency of the implementation by discussing the results obtained for the dining cryptographers protocol and a variant of the cake-cutting problem

    Finite Abstractions for the Verification of Epistemic Properties in Open Multi-Agent Systems

    Get PDF
    We develop a methodology to model and verify open multi-agent systems (OMAS), where agents may join in or leave at run time. Further, we specify properties of interest on OMAS in a variant of first-order temporal-epistemic logic, whose characteris-ing features include epistemic modalities indexed to individual terms, interpreted on agents appear-ing at a given state. This formalism notably allows to express group knowledge dynamically. We study the verification problem of these systems and show that, under specific conditions, finite bisimilar ab-stractions can be obtained

    Tightening the Evaluation of PAC Bounds Using Formal Verification Results

    Full text link
    Probably Approximately Correct (PAC) bounds are widely used to derive probabilistic guarantees for the generalisation of machine learning models. They highlight the components of the model which contribute to its generalisation capacity. However, current state-of-the-art results are loose in approximating the generalisation capacity of deployed machine learning models. Consequently, while PAC bounds are theoretically useful, their applicability for evaluating a model's generalisation property in a given operational design domain is limited. The underlying classical theory is supported by the idea that bounds can be tightened when the number of test points available to the user to evaluate the model increases. Yet, in the case of neural networks, the number of test points required to obtain bounds of interest is often impractical even for small problems. In this paper, we take the novel approach of using the formal verification of neural systems to inform the evaluation of PAC bounds. Rather than using pointwise information obtained from repeated tests, we use verification results on regions around test points. We show that conditioning existing bounds on verification results leads to a tightening proportional to the underlying probability mass of the verified region.Comment: 10 page

    Repairing misclassifications in neural networks using limited data

    Get PDF
    We present a novel and computationally efficient method for repairing a feed-forward neural network with respect to a finite set of inputs that are misclassified. The method assumes no access to the training set. We present a formal characterisation for repairing the neural network and study its resulting properties in terms of soundness and minimality. We introduce a gradient-based algorithm that performs localised modifications to the network's weights such that misclassifications are repaired while marginally affecting network accuracy on correctly classified inputs. We introduce an implementation, I-REPAIR, and show it is able to repair neural networks while reducing accuracy drops by up to 90% when compared to other state-of-the-art approaches for repair
    corecore