3,645 research outputs found

    Using student feedback about the learning environment as a starting point for co-construction

    Get PDF
    The context in which learning takes place, or learning environment, is pivotal to a positive learning experience for students. Although numerous studies have established strong links between a positive learning environment and a range of student outcomes, far less research has examined how teachers might establish such an environment. Amidst growing acknowledgment that opportunities for the co-construction of learning and assessment design could provide a means of developing a more positive learning environment, this case study examined one such journey. Using a case study approach, we argue that student feedback involving a learning environment survey provides a valuable starting point for including students in co-construction and classroom improvement. Our findings indicate that teachers can improve the learning environment by involving students in meaningful co-construction through open tasks

    Development of an empirically based dynamic biomechanical strength model

    Get PDF
    The focus here is on the development of a dynamic strength model for humans. Our model is based on empirical data. The shoulder, elbow, and wrist joints are characterized in terms of maximum isolated torque, position, and velocity in all rotational planes. This information is reduced by a least squares regression technique into a table of single variable second degree polynomial equations determining the torque as a function of position and velocity. The isolated joint torque equations are then used to compute forces resulting from a composite motion, which in this case is a ratchet wrench push and pull operation. What is presented here is a comparison of the computed or predicted results of the model with the actual measured values for the composite motion

    Mixing with the radiofrequency single-electron transistor

    Full text link
    By configuring a radio-frequency single-electron transistor as a mixer, we demonstrate a unique implementation of this device, that achieves good charge sensitivity with large bandwidth about a tunable center frequency. In our implementation we achieve a measurement bandwidth of 16 MHz, with a tunable center frequency from 0 to 1.2 GHz, demonstrated with the transistor operating at 300 mK. Ultimately this device is limited in center frequency by the RC time of the transistor's center island, which for our device is ~ 1.6 GHz, close to the measured value. The measurement bandwidth is determined by the quality factor of the readout tank circuit.Comment: Submitted to APL september 200

    Noise-enabled precision measurements of a Duffing nanomechanical resonator

    Full text link
    We report quantitative experimental measurements of the nonlinear response of a radiofrequency mechanical resonator, with very high quality factor, driven by a large swept-frequency force. We directly measure the noise-free transition dynamics between the two basins of attraction that appear in the nonlinear regime, and find good agreement with those predicted by the one-dimensional Duffing equation of motion. We then measure the response of the transition rates to controlled levels of white noise, and extract the activation energy from each basin. The measurements of the noise-induced transitions allow us to obtain precise values for the critical frequencies, the natural resonance frequency, and the cubic nonlinear parameter in the Duffing oscillator, with direct applications to high sensitivity parametric sensors based on these resonators.Comment: 5 pages, 5 figure
    • …
    corecore