3,645 research outputs found
Using student feedback about the learning environment as a starting point for co-construction
The context in which learning takes place, or learning environment, is pivotal to a positive learning experience for students. Although numerous studies have established strong links between a positive learning environment and a range of student outcomes, far less research has examined how teachers might establish such an environment. Amidst growing acknowledgment that opportunities for the co-construction of learning and assessment design could provide a means of developing a more positive learning environment, this case study examined one such journey. Using a case study approach, we argue that student feedback involving a learning environment survey provides a valuable starting point for including students in co-construction and classroom improvement. Our findings indicate that teachers can improve the learning environment by involving students in meaningful co-construction through open tasks
Development of an empirically based dynamic biomechanical strength model
The focus here is on the development of a dynamic strength model for humans. Our model is based on empirical data. The shoulder, elbow, and wrist joints are characterized in terms of maximum isolated torque, position, and velocity in all rotational planes. This information is reduced by a least squares regression technique into a table of single variable second degree polynomial equations determining the torque as a function of position and velocity. The isolated joint torque equations are then used to compute forces resulting from a composite motion, which in this case is a ratchet wrench push and pull operation. What is presented here is a comparison of the computed or predicted results of the model with the actual measured values for the composite motion
Mixing with the radiofrequency single-electron transistor
By configuring a radio-frequency single-electron transistor as a mixer, we
demonstrate a unique implementation of this device, that achieves good charge
sensitivity with large bandwidth about a tunable center frequency. In our
implementation we achieve a measurement bandwidth of 16 MHz, with a tunable
center frequency from 0 to 1.2 GHz, demonstrated with the transistor operating
at 300 mK. Ultimately this device is limited in center frequency by the RC time
of the transistor's center island, which for our device is ~ 1.6 GHz, close to
the measured value. The measurement bandwidth is determined by the quality
factor of the readout tank circuit.Comment: Submitted to APL september 200
Noise-enabled precision measurements of a Duffing nanomechanical resonator
We report quantitative experimental measurements of the nonlinear response of
a radiofrequency mechanical resonator, with very high quality factor, driven by
a large swept-frequency force. We directly measure the noise-free transition
dynamics between the two basins of attraction that appear in the nonlinear
regime, and find good agreement with those predicted by the one-dimensional
Duffing equation of motion. We then measure the response of the transition
rates to controlled levels of white noise, and extract the activation energy
from each basin. The measurements of the noise-induced transitions allow us to
obtain precise values for the critical frequencies, the natural resonance
frequency, and the cubic nonlinear parameter in the Duffing oscillator, with
direct applications to high sensitivity parametric sensors based on these
resonators.Comment: 5 pages, 5 figure
- …