45 research outputs found

    Quantum-information engines with many-body states attaining optimal extractable work with quantum control

    Get PDF
    We introduce quantum information engines that extract work from quantum states and a single thermal reservoir. They may operate under three general conditions—(1) unitarily steered evolution (US), driven by a restricted set of available Hamiltonians; (2) irreversible thermalization (IT), and (3) isothermal relaxation (IR)—and hence are called USITIR machines. They include novel engines without traditional feedback control mechanisms, as well as versions which also include them. Explicit constructions of USITIR engines are presented for oneand two-qubit states and their maximum extractable work is computed, which is optimal. Optimality is achieved when the notions of controllable thermalizability and density matrix controllability are fulfilled. Then many-body extensions of USITIR engines are also analyzed and conditions for optimal work extraction are identified. When they are not met, we measure their lack of optimality by means of newly defined uncontrollable entropies, which are explicitly computed for some selected examples. This includes cases of distinguishable and indistinguishable particles

    Ethylene and phloem signals are involved in the regulation of responses to Fe and P deficiencies in roots of strategy I plants

    Get PDF
    Iron (Fe) and phosphorus (P) are two essential mineral nutrients whose acquisition by plants presents important environmental and economic implications. Both elements are abundant in most soils but scarcely available to plants. To prevent Fe or P deficiency dicot plants initiate morphological and physiological responses in their roots aimed to specifically acquire these elements. The existence of common signals in Fe and P deficiency pathways suggests the signaling factors must act in conjunction with distinct nutrient-specific signals in order to confer tolerance to each deficiency. Previous works have shown the existence of cross talk between responses to Fe and P deficiency, but details of the associated signaling pathways remain unclear. Herein, the impact of foliar application of either P or Fe on P and Fe responses was studied in P- or Fe-deficient plants of Arabidopsis thaliana, including mutants exhibiting altered Fe or P homeostasis. Ferric reductase and acid phosphatase activities in roots were determined as well as the expression of genes related to P and Fe acquisition. The results obtained showed that Fe deficiency induces the expression of P acquisition genes and phosphatase activity, whereas P deficiency induces the expression of Fe acquisition genes and ferric reductase activity, although only transitorily. Importantly, these responses were reversed upon foliar application of either Fe or P on nutrient-starved plants. Taken together, the results reveal interactions between P- and Fe-related phloem signals originating in the shoots that likely interact with hormones in the roots to initiate adaptive mechanisms to tolerate deficiency of each nutrient

    A shoot Fe signaling pathway requiring the OPT3 transporter controls GSNO reductase and ethylene in arabidopsis thaliana roots

    Get PDF
    Ethylene, nitric oxide (NO) and glutathione (GSH) increase in Fe-deficient roots of Strategy I species where they participate in the up-regulation of Fe acquisition genes. However, S-nitrosoglutathione (GSNO), derived from NO and GSH, decreases in Fe-deficient roots. GSNO content is regulated by the GSNO-degrading enzyme S-nitrosoglutathione reductase (GSNOR). On the other hand, there are several results showing that the regulation of Fe acquisition genes does not solely depend on hormones and signaling molecules (such as ethylene or NO), which would act as activators, but also on the internal Fe content of plants, which would act as a repressor. Moreover, different results suggest that total Fe in roots is not the repressor of Fe acquisition genes, but rather the repressor is a Fe signal that moves from shoots to roots through the phloem [hereafter named LOng Distance Iron Signal (LODIS)]. To look further in the possible interactions between LODIS, ethylene and GSNOR, we compared Arabidopsis WT Columbia and LODIS-deficient mutant opt3-2 plants subjected to different Fe treatments that alter LODIS content. The opt3-2 mutant is impaired in the loading of shoot Fe into the phloem and presents constitutive expression of Fe acquisition genes. In roots of both Columbia and opt3-2 plants we determined 1-aminocyclopropane1-carboxylic acid (ACC, ethylene precursor), expression of ethylene synthesis and signaling genes, and GSNOR expression and activity. The results obtained showed that both 'ethylene' (ACC and the expression of ethylene synthesis and signaling genes) and 'GSNOR' (expression and activity) increased in Fe-deficient WT Columbia roots. Additionally, Fe-sufficient opt3-2 roots had higher 'ethylene' and 'GSNOR' than Fe-sufficient WT Columbia roots. The increase of both 'ethylene' and 'GSNOR' was not related to the total root Fe content but to the absence of a Fe shoot signal (LODIS), and was associated with the up-regulation of Fe acquisition genes. The possible relationship between GSNOR(GSNO) and ethylene is discussed

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    An experimental DUAL model of advanced liver damage

    Get PDF
    Individuals exhibiting an intermediate alcohol drinking pattern in conjunction with signs of metabolic risk present clinical features of both alcohol-associated and metabolic-associated fatty liver diseases. However, such combination remains an unexplored area of great interest, given the increasing number of patients affected. In the present study, we aimed to develop a preclinical DUAL (alcohol-associated liver disease plus metabolic-associated fatty liver disease) model in mice. C57BL/6 mice received 10% vol/vol alcohol in sweetened drinking water in combination with a Western diet for 10, 23, and 52 weeks (DUAL model). Animals fed with DUAL diet elicited a significant increase in body mass index accompanied by a pronounced hypertrophy of adipocytes, hypercholesterolemia, and hyperglycemia. Significant liver damage was characterized by elevated plasma alanine aminotransferase and lactate dehydrogenase levels, extensive hepatomegaly, hepatocyte enlargement, ballooning, steatosis, hepatic cell death, and compensatory proliferation. Notably, DUAL animals developed lobular inflammation and advanced hepatic fibrosis. Sequentially, bridging cirrhotic changes were frequently observed after 12 months. Bulk RNA-sequencing analysis indicated that dysregulated molecular pathways in DUAL mice were similar to those of patients with steatohepatitis. Conclusion: Our DUAL model is characterized by obesity, glucose intolerance, liver damage, prominent steatohepatitis and fibrosis, as well as inflammation and fibrosis in white adipose tissue. Altogether, the DUAL model mimics all histological, metabolic, and transcriptomic gene signatures of human advanced steatohepatitis, and therefore serves as a preclinical tool for the development of therapeutic targets

    Is the assembly of canopy-recruit interactions mediated by plant functional traits?

    No full text
    1 pĂĄgina.- abstract de la comunicaciĂłn oral presentada al congreso online British Ecological Society. Festival of Ecology. Celebrado del 14 al 18 de diciembre de 2020. https://www.britishecologicalsociety.org/events/festival-of-ecology

    Pathogen life-cycle leaves footprint on the spatial distribution of recruitment of their host plants

    No full text
    Interactions between established and recruiting plants play an important role in species coexistence in natural plant communities. However, our knowledge on the particular ecological drivers of these interactions is still limited. We use spatial point pattern analysis to study the spatial patterns of recruitment and infection in two plant-pathogen systems, each involving a fungus with a different life cycle: the pair Quercus faginea-Trabutia quercina and the triad Crataegus monogyna-Gymnosporangium sp.-Juniperus oxycedrus. Our results show that T. quercina, an autoecious fungus, may act as a stabilizing mechanism in the population dynamics of Q. faginea. In turn, the effect of the heteroecious Gymnosporangium sp. on C. monogyna recruitment was more related to distance from the alternate host J. oxycedrus than to distance from conspecifics. These results demonstrate that the complexity of pathogen life cycle may impact recruitment and the development of interspecific plant-plant interactions in real plant communities.This study was conducted under the projects COEXMED (CGL 2012-36776) and COEXMED II (CGL 2015-69118-C2-1-P) of the Spanish Ministerio de EconomĂ­a y Competitividad (MEC) and FEDER funds from the EU. AJP was supported by a FPI grant from the Spanish Ministerio de Ciencia, InnovaciĂłn y Universidades (MCIU/BES-2016-077688) associated to COEXMED II project

    Biotic filters driving the differentiation of decomposer, epiphytic and pathogenic phyllosphere fungi across plant species

    No full text
    The phyllosphere is a wide and complex ecosystem that provides a key support for microbial diversity. Fungal communities inhabiting the leaf are functionally variable and play important roles on plant performance. Factors conditioning the arrival and colonization of fungal communities will determine the phyllosphere fungal composition. Plant identity, leaf functional traits and host plant phylogeny have been shown to be regulators of the microbial colonization of the leaves, and can be considered as biotic filters determining the assembly of phyllosphere fungal communities. By high-throughput sequencing we analysed the phyllosphere fungal communities from 38 Mediterranean woody plant species in two forests of south-eastern Iberian Peninsula. We analysed the effect of plant species and site on fungal community composition. We also tested the effect of leaf functional traits and plant phylogeny on plant species differences in their fungal communities, and on the structure of the plant–fungus interaction network. Plant species account for a larger proportion than site in the variability of the composition of phyllosphere fungal communities. Leaf traits and host phylogeny influence the arrival and colonization of phyllosphere fungal communities across plant species. Plants with pubescent leaves and phylogenetically closer harbour more similar communities of decomposers, pathogens and epiphytes. Leaf habit (i.e. evergreen versus deciduous) also influences the community composition of decomposer and epiphytic fungi. Leaf carbon, leaf water content and leaf mass per area affect differentially each functional guild. Plant–fungus interaction networks present a modular structure in which plants belonging to the same module share more fungal species and are phylogenetically closer. We provide evidence that even though phyllosphere fungal communities are complex ecosystems, fungi with contrasting relationships with the plant (decomposers, epiphytes and pathogens) respond similarly to a common subset of leaf traits that impose physical limitations to the assembly of phyllosphere fungal communities.This study was funded supported by the project REPNETS (PGC2018-100966-B-I00) of the Spanish Ministerio de Economía y Competitividad (MEC) and FEDER funds from the EU. MPM was supported by a FPI grant from the Spanish Ministerio de Ciencia, Innovación y Universidades (MCIU/PRE2019-089069)

    Prolonged grief and depression: A latent class analysis

    No full text
    Recent trends in grief research have been exploring how symptoms of prolonged grief disorder (PGD) and depression co-occur in bereaved individuals using Latent Class Analysis (LCA). However, the PGD criteria have kept undergoing changes and the newest DSM-5 PGD criteria have not been captured in these studies. Also, previous LCA-grief studies have been conducted in Western cultures, focusing more on bereaved adult populations. In this study, we applied LCA on a non-Western sample of bereaved young and middle-aged adults to examine whether the consistently observed 3 latent classes will emerge. We explored if the socio-demographic, loss-related factors, religiousness, spirituality, and continuing bond to the deceased, differentiated the latent classes. We confirmed the 3 latent classes comprising the Resilient class (20.6%), the predominantly PGD class (44.7%), and the combined PGD and Depression class (34.7%). Age, time elapsed since the loss, continuing bond and relationship with the deceased as well as spiritual beliefs were the differential predictors of class membership. This study increases our conceptual and clinical understanding of the predictability of PGD symptomology outcome, according to the newest DSM-5 criteria following bereavement in a non-Western sample. In addition to the continuing bond which was the strongest correlate, attention should be paid to important sociocultural frameworks in grief management
    corecore