8,193 research outputs found

    Production of the Y(4260) State in B Meson Decay

    Get PDF
    We calculate the branching ratio for the production of the meson Y(4260)Y(4260) in the decay B−→Y(4260)K−B^- \to Y(4260)K^-. We use QCD sum rules approach and we consider the Y(4260)Y(4260) to be a mixture between charmonium and exotic tetraquark, [cˉqˉ][qc][\bar{c}\bar{q}][qc], states with JPC=1−−J^{PC}=1^{--}. Using the value of the mixing angle determined previously as: θ=(53.0±0.5)∘\theta=(53.0\pm0.5)^\circ, we get the branching ratio B(B→Y(4260)K)=(1.34±0.47)×10−6\mathcal{B}(B\to Y(4260)K)=(1.34\pm0.47)\times10^{-6}, which allows us to estimate an interval on the branching fraction 3.0×10−8<BY<1.8×10−63.0 \times 10^{-8} < {\mathcal B}_{_Y} < 1.8 \times 10^{-6} in agreement with the experimental upper limit reported by Babar Collaboration.Comment: 5 pages, 2 figures, 1 table. arXiv admin note: text overlap with arXiv:1105.134

    A Neural Network Gravitational Arc Finder based on the Mediatrix filamentation Method

    Full text link
    Automated arc detection methods are needed to scan the ongoing and next-generation wide-field imaging surveys, which are expected to contain thousands of strong lensing systems. Arc finders are also required for a quantitative comparison between predictions and observations of arc abundance. Several algorithms have been proposed to this end, but machine learning methods have remained as a relatively unexplored step in the arc finding process. In this work we introduce a new arc finder based on pattern recognition, which uses a set of morphological measurements derived from the Mediatrix Filamentation Method as entries to an Artificial Neural Network (ANN). We show a full example of the application of the arc finder, first training and validating the ANN on simulated arcs and then applying the code on four Hubble Space Telescope (HST) images of strong lensing systems. The simulated arcs use simple prescriptions for the lens and the source, while mimicking HST observational conditions. We also consider a sample of objects from HST images with no arcs in the training of the ANN classification. We use the training and validation process to determine a suitable set of ANN configurations, including the combination of inputs from the Mediatrix method, so as to maximize the completeness while keeping the false positives low. In the simulations the method was able to achieve a completeness of about 90% with respect to the arcs that are input to the ANN after a preselection. However, this completeness drops to ∼\sim 70% on the HST images. The false detections are of the order of 3% of the objects detected in these images. The combination of Mediatrix measurements with an ANN is a promising tool for the pattern recognition phase of arc finding. More realistic simulations and a larger set of real systems are needed for a better training and assessment of the efficiency of the method.Comment: Updated to match published versio

    Comment on ``Casimir force in compact non-commutative extra dimensions and radius stabilization''

    Full text link
    We call attention to a series of mistakes in a paper by S. Nam [JHEP 10 (2000) 044, hep-th/0008083].Comment: 6 pages, LaTeX, uses JHEP.cl

    Y(4260) as a mixed charmonium-tetraquark state

    Get PDF
    Using the QCD sum rule approach we study the Y(4260) state assuming that it can be described by a mixed charmonium-tetraquark current with JPC=1−−J^{PC}=1^{--} quantum numbers. For the mixing angle around θ≈(53.0±0.5)0\theta \approx (53.0\pm 0.5)^{0}, we obtain a value for the mass which is in good agreement with the experimental mass of the Y(4260). However, for the decay width we find the value \Ga_Y \approx (1.0\pm 0.2) MeV which is not compatible with the experimental value \Ga \approx (88\pm 23) MeV. Therefore, we conclude that, although we can explain the mass of the Y(4260), this state cannot be described as a mixed charmonium-tetraquark state since, with this assumption, we can not explain its decay width.Comment: 9 pages, 6 figure

    Anisotropic Lifshitz Point at O(ϵL2)O(\epsilon_L^2)

    Full text link
    We present the critical exponents νL2\nu_{L2}, ηL2\eta_{L2} and γL\gamma_{L} for an mm-axial Lifshitz point at second order in an ϵL\epsilon_{L} expansion. We introduced a constraint involving the loop momenta along the mm-dimensional subspace in order to perform two- and three-loop integrals. The results are valid in the range 0≤m<d0 \leq m < d. The case m=0m=0 corresponds to the usual Ising-like critical behavior.Comment: 10 pages, Revte

    Lifshitz-point critical behaviour to O(ϵ2){\boldsymbol{O(\epsilon^2)}}

    Full text link
    We comment on a recent letter by L. C. de Albuquerque and M. M. Leite (J. Phys. A: Math. Gen. 34 (2001) L327-L332), in which results to second order in ϵ=4−d+m2\epsilon=4-d+\frac{m}{2} were presented for the critical exponents νL2\nu_{{\mathrm{L}}2}, ηL2\eta_{{\mathrm{L}}2} and γL2\gamma_{{\mathrm{L}}2} of d-dimensional systems at m-axial Lifshitz points. We point out that their results are at variance with ours. The discrepancy is due to their incorrect computation of momentum-space integrals. Their speculation that the field-theoretic renormalization group approach, if performed in position space, might give results different from when it is performed in momentum space is refuted.Comment: Latex file, uses the included iop stylefiles; Uses the texdraw package to generate included figure
    • …
    corecore