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Using the QCD sum rule approach we study the Yð4260Þ state assuming that it can be described by a

mixed charmonium-tetraquark current with JPC ¼ 1�� quantum numbers. For the mixing angle around

� � ð53:0� 0:5Þ�, we obtain a value for the mass which is in good agreement with the experimental mass

of the Yð4260Þ. For the decay width into the channel Y ! J=c�� we find the value �Y!J=c�� �
ð4:1� 0:6Þ MeV, which is much smaller than the total experimental width � � ð95� 14Þ MeV.

However, considering the experimental upper limits for the decay of the Yð4260Þ into open charm, we

conclude that we cannot rule out the possibility of describing this state as a mixed charmonium-tetraquark

state.

DOI: 10.1103/PhysRevD.86.116012 PACS numbers: 11.55.Hx, 12.38.Lg, 12.39.�x

I. INTRODUCTION

Many of the charmonium-like states recently observed
in eþe� collisions by BABAR and Belle collaborations do
not fit the quarkonia interpretation, and have stimulated an
extensive discussion about exotic hadron configurations.
The production mechanism, masses, decay widths, spin-
parity assignments, and decay modes of these states, called
X, Y, and Z states, have been discussed in some reviews
[1–5]). Among these states, the Yð4260Þ is particularly
interesting. It was first observed by BABAR collaboration
in the eþe� annihilation through initial state radiation [6],
and it was confirmed by CLEO and Belle collabora-
tions [7]. The Yð4260Þ was also observed in the
B�!Yð4260ÞK�!J=��þ��K� decay [8], and CLEO
reported two additional decay channels: J=��0�0 and
J=�KþK� [7].

Since the mass of the Yð4260Þ is higher than theDð�Þ �Dð�Þ
threshold, if it was a normal c �c charmonium state, it should

decay mainly toDð�Þ �Dð�Þ. However, the observed Y state do

not match the peaks in eþe� ! Dð�Þ�Dð�Þ� cross sections
measured by Belle [9] and BABAR [10,11]. Besides, the
�ð3SÞ, �ð2DÞ, and �ð4SÞ c �c states have been assigned
to the well-established �ð4040Þ, �ð4160Þ, and �ð4415Þ
mesons, respectively, and the prediction from quark
models for the �ð3DÞ state is 4.52 GeV. Therefore,
the mass of the Yð4260Þ is not consistent with any of the
1�� c �c states [2,3,12].

There are many theoretical interpretations for the
Yð4260Þ: tetraquark state [13], hadronic molecule of
D1D, D0D

� [14], �c1! [15], �c1� [16], J=c f0ð980Þ [17],
a hybrid charmonium [18], a charm baryonium [19],

a cusp [20–22], etc. Within the available experimental
information, none of these suggestions can be completely
ruled out. However, there are some calculations, within the
QCD sum rules (QCDSR) approach [3,23–25], that cannot
explain the mass of the Yð4260Þ supposing it to be a
tetraquark state [26], or a D1D, D0D

� hadronic molecule
[26], or a J=c f0ð980Þ molecular state [27].
In this work we use again the QCDSR approach to the

Yð4260Þ state including a new possibility: the mixing
between two and four-quark states. This will be imple-
mented following the prescription suggested in Ref. [28]
for the light scalar mesons. The mixing is done at the level
of the currents and was extended to the charm sector in
Ref. [29], in order to study the Xð3872Þ as a mixed
charmonium-molecular state. In particular, in Ref. [29],
the mass and the decay width of the Xð3872Þ, into 2� and
3�, were evaluated with good agreement with the experi-
mental values. Agreement with the experimental results
has been also obtained, applying this same approach, in the
study of the Xð3872Þ radiative decay [30], and also in the
Xð3872Þ production rate in B decay [31].
In the next sections we consider a mixed charmonium-

tetraquark current and use the QCDSR method to study
both mass and decay width of the Yð4260Þ.

II. CONSTRUCTING THE TWO-QUARK
AND FOUR-QUARK OPERATOR

In order to define a mixed charmonium-tetraquark
current we have to define the currents associated with
charmonium and four-quarks (tetraquark) states. For
the charmonium part we use the conventional vector
current:

j0ð2Þ� ðxÞ ¼ �caðxÞ��caðxÞ; (1)

while the tetraquark part is interpolated by [26]
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jð4Þ� ðxÞ ¼ �abc�decffiffiffi
2

p ½ðqTa ðxÞC�5cbðxÞÞð �qdðxÞ���5C �cTe ðxÞÞ

þ ðqTa ðxÞC�5��cbðxÞÞð �qdðxÞ�5C �cTe ðxÞÞ�: (2)

As in Refs. [28,29], we define the normalized two-quark
current as

jð2Þ� ¼ 1ffiffiffi
2

p h �qqij0ð2Þ� ; (3)

and from these two currents we build the following mixed
charmonium-tetraquark JPC ¼ 1�� current for the
Yð4260Þ state:

j�ðxÞ ¼ sinð�Þjð4Þ� ðxÞ þ cosð�Þjð2Þ� ðxÞ: (4)

III. THE TWO-POINT CORRELATION FUNCTION

To obtain the mass of a hadronic state using the QCDSR
approach, the starting point is the two-point correlation
function

���ðqÞ ¼ i
Z

d4xeiq�xh0jT½j�ðxÞjy�ð0Þ�j0i

¼ ��1ðq2Þ
�
g�� �

q�q�

q2

�
þ�0ðq2Þ

q�q�

q2
; (5)

where j�ðxÞ is the mixed charmonium-tetraquark inter-

polating current defined in Eq. (4). The functions �1ðq2Þ
and �0ðq2Þ are two independent invariant functions asso-
ciated with spin-1 and spin-0 mesons, respectively.

According to the principle of duality, Eq. (5) can be
evaluated in two ways: in the operator product expansion
(OPE) side, we calculate the correlation function in terms of
quarks and gluon fields using the Wilson’s operator product
expansion. The phenomenological side is evaluated by
inserting, in Eq. (5), a complete set of intermediate states
with 1�� quantum numbers. In this side, we parametrize
the coupling of the vector state Y with the current defined in
Eq. (4) through the coupling parameter 	Y

h0jj�ðxÞjYi ¼ 	Y��; (6)

where �� is the polarization vector. Using Eq. (6), we can

write the phenomenological side of Eq. (5) as

�fen
��ðqÞ ¼ 	2

Y

M2
Y � q2

�
g�� �

q�q�

q2

�
þ � � � ; (7)

where mY is the mass of the Y state and the dots, in the
second term in the rhs of Eq. (7), denotes the higher
resonance contributions which will be parametrized, as
usual, through introduction of the continuum threshold
parameter s0 [32].

The OPE side can be written in terms of a dispersion
relation

�OPEðq2Þ ¼
Z 1

4m2
c

ds
�OPEðsÞ
s� q2

; (8)

where �OPEðsÞ is given by the imaginary part of the
correlation function: ��OPEðsÞ ¼ Im½�OPEðsÞ�. In this
side, we work at leading order in 
s in the operators and
we consider the contributions from the condensates up to
dimension 8. Although we will consider only a part of the
of the dimension 8 condensates (related to the quark con-
densate times the mixed condensate), in Ref. [33] it was
shown that this is the most important dimension 8 conden-
sate contribution.
Considering the current in Eqs. (4) and (5) in the OPE

side can be written as

���ðqÞ ¼ h �qqi2
2

cos2ð�Þ�22
��ðqÞ þ sin2ð�Þ�44

��ðqÞ

þ h �qqiffiffiffi
2

p sinð�Þ cosð�Þ½�24
��ðqÞ þ�42

��ðqÞ�; (9)

with

�ij
��ðqÞ ¼ i

Z
d4xeiq�xh0jT½ji�ðxÞjjy� ð0Þ�j0i: (10)

Clearly �22
��ðqÞ and �44

��ðqÞ are, respectively, the correla-
tion functions of the J=c and ½cq�½ �c �q� tetraquark state.
After making a Borel transform in both sides, and trans-

ferring the continuum contributions to the OPE side, the
sum rule in the g�� structure for the vector meson can be

written as

	2
Ye

�m2
Y=M

2
B ¼h �qqi2

2
cos2ð�Þ�22

1 ðM2
BÞþsin2ð�Þ�44

1 ðM2
BÞ

þh �qqiffiffiffi
2

p sinð�Þcosð�Þ½�24
1 ðM2

BÞþ�42
1 ðM2

BÞ�;

(11)

where

�22
1 ðM2

BÞ ¼
Z s0

4m2
c

dse�s=M2
B�22

pertðsÞ þ�22
hG2iðM2

BÞ; (12)

�44
1 ðM2

BÞ ¼
Z s0

4m2
c

dse�s=M2
Bð�44

pertðsÞ þ �44
h �qqiðsÞ þ �44

hG2iðsÞ

þ �44
h �qGqiðsÞ þ �44

h �qqi2ðsÞ þ �44
h8iÞ þ�44

h8iðM2
BÞ;
(13)

�24
1 ðM2

BÞ ¼
Z s0

4m2
c

dse�s=M2
B�24

h �qqiðsÞ þ�24
h �qGqiðM2

BÞ: (14)

The expressions for the spectral density �ðsÞ appearing in
Eqs. (12)–(14) for the charmonium and tetraquark states,
as well as the mixed terms are listed in the Appendix.
By taking the derivative of Eq. (11) with respect to

1=M2
B and dividing the result by Eq. (11), we obtain

m2
Y ¼ �

dKðM2
B;�Þ

dð1=M2
BÞ

KðM2
B; �Þ

; (15)
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where

KðM2
B; �Þ 	

h �qqi2
2

cos2ð�Þ�22
1 ðM2

BÞ þ sin2ð�Þ�44
1 ðM2

BÞ

þ h �qqiffiffiffi
2

p sinð�Þ cosð�Þ½�24
1 ðM2

BÞ þ�42
1 ðM2

BÞ�:

Equation (15) will be used to extract the mass of the
charmonium-tetraquark state.

A. Numerical analysis

In Table I we list the values of the quark masses
and condensates that we have used in our numerical analy-
sis. For a consistent comparison with results obtained
for the others works using QCD sum rules, these para-
meters values used here are the same values used in
Refs. [25,27,34,35].

The continuum threshold is a physical parameter that, in
the QCDSR approach, should be related to the first excited
state with the same quantum numbers. In some known
cases, like the � and J=c , the first excited state has a
mass approximately 0.5 GeV above the ground state mass.
Since in our study we do not know the experimental
spectrum for the hadrons studied, wewill fix the continuum
threshold range starting with the smaller value which pro-
vides a valid Borel window, as explained below. Using this
criterion, we obtain s0 in the range 4:6 
 ffiffiffiffiffi

s0
p 
 4:8 GeV.

Reliable results can be extracted from the sum rule if is
possible to determine a valid Borel window. Such Borel
window is obtained by imposing a good OPE convergence,
the dominance of the pole contribution, and a good Borel
stability. To determine the minimum value of the Borel
mass we adopt the criterion for which the contribution of
the higher dimension condensate should be smaller than
15% of the total contribution. Thus, M2

Bmin is such that��������OPE summed up to dimn� 1ðM2
BminÞ

total contributionðM2
BminÞ

�������� ¼ 0:85: (16)

In Fig. 1 we plot the relative contributions of all the
terms in the OPE side. We have used

ffiffiffiffiffi
s0

p ¼ 4:70 GeV and

� ¼ 53�. For others � values outside the range 52:5� 

� 
 53:5�, we do not have a good OPE convergence. From
this figure we see that the contribution of the dimension-8
condensates is smaller than 15% of the total contribution
for values of M2

B � 2:4 GeV2, indicating a good OPE

convergence. Therefore, we fix the lower value of M2
B in

the sum rule window as: M2
Bmin ¼ 2:4 GeV2.

To determine the maximum value of the Borel mass
(M2

Bmax) we must analyse the pole-continuum contribution.
Unlike the pole contribution, the continuum contribution
increases withM2

B due to the dominance of the perturbative
contribution. Therefore, the maximum value of the Borel
mass is determined in the point that the pole contribution is
equal to the continuum contribution.
In Fig. 2 we see a comparison between the pole

and continuum contributions. It is clear that the pole con-
tribution is equal to the continuum contribution for
M2

B ¼ 2:90 GeV2. Therefore, for
ffiffiffiffiffi
s0

p ¼ 4:70 GeV2 and

� ¼ 53� the Borel window is: 2:4 
 M2
B 
 2:90 GeV2.

After we have determined the Borel window, we can
calculate the ground state mass, which is shown, as a
function of M2

B, in the Fig. 3. From this figure we see
that there is a very good stability in the ground state
mass in the determined Borel window, which are repre-
sented through the crosses in Fig. 3.
Varying the value of the continuum threshold in the

range
ffiffiffiffiffi
s0

p ¼ 4:70� 0:10 GeV, the mixing angle in the

range � ¼ ð53:0� 0:5Þ�, and the other parameters as
indicated in Table I, we get:

mY ¼ ð4:26� 0:13Þ GeV; (17)

which is in a very good agreement with the experimental
mass of the Yð4260Þ.
Once we have determined the mass, we can use this

value in Eq. (11) to estimate the meson-current coupling
parameter, defined in Eq. (6). We have used the same
values of the s0, � and Borel window used for the mass
calculation. Thus, we get:

	Y ¼ ð2:00� 0:23Þ � 10�2 GeV5: (18)

TABLE I. Quark masses and condensates values.

Parameters Values

mcðmcÞ ð1:23� 0:05Þ GeV
h �qqi �ð0:23� 0:03Þ3 GeV3

h �qg�:Gqi m2
0h �qqi

m2
0 ð0:8� 0:1Þ GeV2

hg2sG2i ð0:88� 0:25Þ GeV4

2.0 2.5 3.0 3.5 4.0

1

0

1

2

3

4

5

6

MB
2 GeV2

O
PE

FIG. 1 (color online). The OPE convergence in the region
2:0 
 M2

B 
 6:0 GeV2 for
ffiffiffiffiffi
s0

p ¼ 4:70 GeV. We plot the rela-

tive contributions start with perturbative contribution (line with
circles), and each other line represents the relative contribution
after the addition of one extra condensate in expansion: þh �qqi
(dot-dashed line),þhG2i (long-dashed line),þh �qg�:Gqi (dotted
line), þh �qqi2 (dashed line), and h �qqih �qg�:Gqi (solid line).
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The parameter 	Y gives a measure of the strength of the
coupling between the current and the state. The result in
Eq. (18) has the same order of magnitude as the coupling
obtained for the Xð3872Þ [34], for example.

IV. THE VERTEX FUNCTION AND THE
DECAY WIDTH OF THE Yð4260Þ

The QCDSR technique can also be used to extract
coupling constants and form factors. In particular, in
Ref. [36] the authors determined the form factors and
coupling constants in many hadronic vertices containing
charmed mesons, in the framework of QCD sum rules. In
this section, we will use the QCDSR approach to determine
the coupling constant associated with the vertices YJ=c�
and YJ=c f0ð980Þ to estimate the decay width of the
process Y ! J=c��. We are assuming that the two pions
in the final state come from the � and f0ð980Þ mesons.

We start with the coupling constant associated with the
vertex YJ=c�. To determine the coupling we must evalu-
ate the vertex function (three-point function) defined as

���ðp; p0; qÞ ¼
Z

d4xd4yeip
0�xeiq�y���ðx; yÞ; (19)

with p ¼ p0 þ q and ���ðx; yÞ given by

���ðx; yÞ ¼ h0jTfjc�ðxÞj�ðyÞjYy� ð0Þgj0i: (20)

The interpolating fields appearing in Eq. (20) are the cur-
rents for J=c , �, and Yð4260Þ, respectively. The currents
for J=c and Y were defined by Eqs. (1) and (4). For the
meson �, we have

j�ðxÞ ¼ 1ffiffiffi
2

p ð �uaðxÞuaðxÞ þ �daðxÞdaðxÞÞ: (21)

Although there are conjectures [37] and lattice calculations
[38] proposing that the � itself could be a tetraquark state,
there are also lattice calculations [39] and QCDSR calcu-
lations [40] that find it difficult to explain the light scalars as
tetraquark states. Therefore, here we use a simple quark-
antiquark current to describe the �.
As in the case of the two-point function studied in the

previous section, the three-point correlation function
defined by Eq. (19) can also be described in terms of
hadronic degrees of freedom (phenomenological side) or
in terms of quarks and gluons fields (OPE side). In order
to evaluate the phenomenological side of the sum rule we
insert, in Eq. (19), intermediate states for Y, J=c , and �.
Using the definitions:

h0jjc� jJ=c ðp0Þi ¼ mc fc ��ðp0Þ;
h0jj�j�ðqÞi ¼ A�;

hYðpÞjjY� j0i ¼ 	Y�
�
�ðpÞ;

(22)

we obtain the following relation:

�ðphenÞ
�� ðp;p0;qÞ¼ 	Ymc fcA�gYc�ðq2Þ

ðp2�m2
YÞðp02�m2

c Þðq2�m2
�Þ

�ððp0 �pÞg���p0
�q��p0

�p
0
�Þþ��� ;

(23)

where the dots stand for the contribution of all possible
excited states. The form factor, gYc�ðq2Þ, is defined by

the generalization of the on-mass-shell matrix element,
hJ=c�jYi, for an off-shell � meson:

hJ=c�jYi ¼ gYc�ðq2Þðp0 � p��ðp0Þ � �ðpÞ
� p0 � �ðpÞp � ��ðp0ÞÞ; (24)

which can be extracted from the effective Lagrangian that
describes the coupling between two vector mesons and one
scalar meson:

L ¼ igYc�V
�A

��; (25)

where V
� ¼ @
Y� � @�Y
 and A
� ¼ @
c � � @�c 
,

are the tensor fields of the Y and c fields, respectively.

2.0 2.5 3.0 3.5 4.0

0.0

0.2

0.4

0.6

0.8

1.0

MB
2 GeV2

Po
le

x
C

on
tin

uu
m

FIG. 2 (color online). The pole contribution (divided by
the total, pole plus continuum, contribution) represented by
solid line and the continuum contribution (dotted line) for theffiffiffiffiffi
s0

p ¼ 4:70 GeV.

2.0 2.5 3.0 3.5 4.0
4.20

4.25

4.30

4.35

4.40

4.45

4.50

4.55

MB
2 GeV2

m
Y

G
eV

FIG. 3 (color online). The mass as a function of the sum
rule parameter M2

B for
ffiffiffiffiffi
s0

p ¼ 4:60 GeV (dotted line),
ffiffiffiffiffi
s0

p ¼
4:70 GeV (solid line),

ffiffiffiffiffi
s0

p ¼ 4:80 GeV (long-dashed line). The

crosses indicate the valid Borel window.
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In the OPE side, we work at leading order in 
s and we
consider the condensates up to dimension five, as shown in
Fig. 4. We have chosen to work in the p0

�q� structure since

it has more terms contributing for the OPE. Taking the
limit p2 ¼ p02 ¼ �P2 and doing the Borel transform to
P2 ! M2, we get the following expression for the sum rule
in the structure p0

�q�:

	YA�mc fc

ðm2
Y �m2

c Þ
gYc�ðQ2Þðe�m2

c =M
2 � e�m2

Y=M
2Þ

þ BðQ2Þe�s0=M
2

¼ ðQ2 þm2
�Þ�ðOPEÞðM2; Q2Þ; (26)

where Q2 ¼ �q2, and BðQ2Þ gives the contribution to the

pole-continuum transitions [29,41–43]. �ðOPEÞðM2; Q2Þ is
given by

�ðOPEÞðM2;Q2Þ

¼ sinð�Þ
324

ffiffiffi
2

p
�2

Z 1

0
d
e

�m2
c


ð1�
ÞM2

�
�
mch �qg�:Gqi

Q2

�
2
ð1�
Þ�1


ð1�
Þ
�
�hg2sG2i

25�4

�
: (27)

The sine present in Eq. (27) indicates that only the
tetraquark part of current in Eq. (4) contributes to the
OPE side. In fact, the charmonium part of the current gives
only disconnected diagrams that are not considered.

In Eq. (26) mc and fc are the mass and decay constant

of the J=c and m� is the mass of the � meson. Their
values are: mc ¼ 3:1 GeV, fc ¼ 0:405 GeV [44], and

m� ¼ 0:478 GeV [45], which is the mean value of the
values quoted for m� in [44]. We will use the range in
Ref. [44] to evaluate the uncertainties. The parameters 	Y

and A� represent, respectively, the coupling of the Y and �
states with the currents defined in Eqs. (6) and (22).
The value of 	Y is given in Eq. (18), while A� was
determined in Ref. [46] and its value is A� ¼ 0:197 GeV2.

Similarly to what was done to get mY in Eq. (15), one
can use Eq. (26) and its derivative with respect to M2 to
eliminate BðQ2Þ from these equations and to isolate
gYc�ðQ2Þ. A good sum rule must be as much independent

of the Borel mass as possible. Therefore, we have to
determine a region in the Borel mass where the form factor
is independent of M2. In Fig. 5 we show gYc�ðQ2Þ as a

function of both M2 and Q2. Notice that in the region
7:0 
 M2 
 10:0 GeV2, the form factor is clearly stable,
as a function of M2, for all values of Q2.
The squares in Fig. 6 show the Q2 dependence of

gYc�ðQ2Þ, obtained for M2 ¼ 8:0 GeV2. For other values

of the Borel mass, in the range 7:0 
 M2 
 10:0 GeV2,
the results are equivalent. Since we are interested in the
coupling constant, which is defined as value of the form
factor at the meson pole: Q2 ¼ �m2

�, we need to extrapo-
late the form factor for a region ofQ2 where the QCDSR is
not valid. This extrapolation can be done by parametrizing
the QCDSR results for gYc�ðQ2Þ using a monopole form:

Y

J/ψ

σ

c

c

q

q

J/ψ

σ

Y

c

c

q

q

J/ψ

σ

Y

c

c

q

q

J/ψ

σ

Y

c

c

q

q

J/ψ

Y

σ

c

c

q

q

Permutations

FIG. 4. Diagrams which contribute to the OPE side of the sum rule for the structure p0
�q�.

FIG. 5 (color online). gYc�ðQ2Þ values obtained by varying
both Q2 and M2.
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gYc�ðQ2Þ ¼ g1
g2 þQ2

: (28)

We do the fit for
ffiffiffiffiffi
s0

p ¼ 4:74 GeV. We notice that the

results do not depend much on this parameter. The results
are:

g1¼ð0:58�0:04ÞGeV; g2¼ð4:71�0:06ÞGeV2: (29)

The solid line in Fig. 6 shows that the parametrization
given by Eq. (28) reproduces very well the QCDSR results
for gYc�ðQ2Þ, in the interval 2:0 
 Q2 
 4:0 GeV2, where

the QCDSR is valid.
The coupling constant, gYc� is given by using

Q2 ¼ �m2
� in Eq. (28). We get:

gYc� ¼ gYc�ð�m2
�Þ ¼ ð0:13� 0:01Þ GeV�1: (30)

The error in the coupling constant given above comes from
variations in s0 in the range 4:6 
 s0 
 4:8 GeV2, and in
the mixing angle 52:5� 
 � 
 53:5�.

In Table II, we show the other values of the coupling
constant corresponding to the values of

ffiffiffiffiffi
s0

p
that we have

considered in our calculations.

The decay width for the process Yð4260Þ ! J=c� !
J=c�� in the narrow width approximation is given by

d�

ds
ðY!J=c��Þ¼ 1

8�m2
Y

jMj2m
2
Y�m2

c þs

2m2
Y

���ðsÞm�

�

pðsÞ
ðs�m2

�Þ2þðm���ðsÞÞ2
;

(31)

with pðsÞ given by

pðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	ðm2

Y; m
2
c ; sÞ

q
2mY

; (32)

where 	ða; b; cÞ ¼ a2 þ b2 þ c2 � 2ab� 2ac� 2bc,
and ��ðsÞ is the s-dependent width of an off-shell �
meson [45]:

��ðsÞ ¼ �0�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	ðs; m2

�;m
2
�Þ

	ðm2
�;m

2
�;m

2
�Þ

s
m2

�

s
; (33)

where �0� is the experimental value for the decay of
the � meson into two pions. Its value is �0� ¼
ð0:4–0:7Þ GeV [44].
The invariant amplitude squared can be obtained from

the matrix element in Eq. (24). We get:

jMj2 ¼ g2Yc�ðsÞfðmY;mc ; sÞ; (34)

where gYc�ðsÞ is the form factor in the vertex YJ=c�,

given in Eq. (28) using s ¼ �Q2, and

fðmY;mc ; sÞ ¼ 1

3

�
m2

Ym
2
c þ 1

2
ðm2

Y þm2
c � sÞ2

�
:

Therefore, the decay width for the process Yð4260Þ !
J=c�� is given by

� ¼ m�

16�2m4
Y

I; (35)

where we have defined

I ¼
Z ðmY�mc Þ2

ð2m�Þ2
dsg2Yc�ðsÞ��ðsÞðm2

Y �m2
c þ sÞ

� fðmY;mc ; sÞ pðsÞ
ðs�m2

�Þ2 þ ðm���ðsÞÞ2
: (36)

Hence, taking variations on s0, �, �0�, and m� in the same
intervals given above, we obtain from Eqs. (30)–(35) the
following value for the decay width

��ðY ! J=c��Þ ¼ ð1:0� 0:4Þ MeV: (37)

The considered decay can also proceed through the
f0ð980Þ intermediate state. In order to estimate the decay
width through this intermediate state, we have to determine
the coupling constant associated with the vertex Y !
J=c f0ð980Þ. Therefore, we have to evaluate the vertex

FIG. 6 (color online). QCDSR results for gYc�ðQ2Þ, as a
function of Q2, for

ffiffiffiffiffi
s0

p ¼ 4:76 GeV (squares). The solid

line gives the parametrization of the QCDSR results through
Eq. (28).

TABLE II. Monopole parametrization of the QCDSR results
for the chosen structure, for different values of

ffiffiffiffiffi
s0

p
.

ffiffiffiffiffi
s0

p
(GeV)

gYc�ðQ2Þ
(GeV�1)

gYc�ðQ2 ¼ �m2
�Þ

(GeV�1)

4.6 0:53
Q2þ4:77

0.12

4.7 0:57
Q2þ4:71

0.13

4.8 0:63
Q2þ4:66

0.14
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function given in Eq. (19) with the � meson current
replaced by the interpolating current for the f0ð980Þ
meson. Similarly to what was done for the � intermediate
state, we also consider a simple quark-antiquark current to
describe the f0ð980Þ. In particular, we consider the f0ð980Þ
as a quark-antiquark state with a mixture of strange and
light components. Hence, the interpolating current for
f0ð980Þ is given by

jf0 ¼ cosð
Þ�ssþ sinð
Þffiffiffi
2

p ð �uuþ �ddÞ: (38)

This current was used in Refs. [47–49] to study different
hadronic D decays into f0ð980Þ. The angle used in these
references was 
 � 37�, which we are using here.

Since the interpolating field for the Yð4260Þ in Eq. (4)
has no strange quarks, only the light component of the
current in Eq. (38) contributes to the vertex function.
Comparing the currents in Eqs. (38) and (21), we see that
the light part of them differ only by the factor sinð
Þ.
Therefore, the OPE side of the sum rules is just what we
have in Eq. (27) multiplying by sinð
Þ.

In the phenomenological side we have only to replace
m� by mf0 and A� by Af0 , where Af0 ¼ h0jjf0 jf0ð980Þi
was determined in Ref. [49] and its value is Af0 ¼ ð0:19�
0:02Þ GeV2. We are using mf0 ¼ ð990� 20Þ MeV [44].

In Table III, we show the coupling constant values,
gYc f0ð980Þ, and its corresponding form factor, calculated

for different values of
ffiffiffiffiffi
s0

p
.

We can now estimate the decay width for the process
Y ! J=c��, considering that the two pions in the final
state come from the f0ð980Þ meson. Using Eq. (35) with
f0 parameters instead of � ones, which means mf0 ¼
ð990� 20Þ MeV and �0f0 ¼ ð40–100Þ MeV [44], and

taking variations in 4:6 
 ffiffiffiffiffi
s0

p 
 4:8 GeV and 52:3� 

� 
 53:5�, we obtain

�f0ðY ! J=c��Þ ¼ ð3:1� 0:2Þ MeV; (39)

leading to the following decay width into this channel:

�ðY ! J=c��Þ ¼ ð4:1� 0:6Þ MeV; (40)

which is consistent with the lower bound given in Ref. [5]:
�ðY ! J=c��Þ> 508 keV at 90% CL.

In addition, we can also give an estimate of the decay
width in the channel Y ! J=cKK, that has also been

observed. In order to do this, we substitute in Eq. (33)
the � and � parameters by the f0ð980Þ and K mesons
parameters. Using mK ¼ ð493:677� 0:016Þ MeV [44]
and Eq. (35) with the form factors gYc f0 listed in

Table III and taking variations on
ffiffiffiffiffi
s0

p
, �, and �0f0 in

the ranges given above, we get for the decay width
Y ! J=cKK:

�f0ðY ! J=cKKÞ ¼ ð1:3� 0:4Þ MeV: (41)

V. SUMMARYAND CONCLUSIONS

In summary, we have used the QCDSR approach to
study the two-point and three-point functions of the
Yð4260Þ state, by considering a mixed charmonium-
tetraquark current. In the determination of the mass, we
work with the two-point function at leading order in
s and
we consider the contributions from the condensates up to
dimension 8. Avery good agreement with the experimental
value of the mass of the Yð4260Þ is obtained for the mixing
angle around � � ð53:0� 0:5Þ�.
To evaluate the width of the decay Yð4260Þ ! J=c��,

we work with the three-point function also at leading order
in 
s and we consider the contributions from the conden-
sates up to dimension five. We assume that the two pions
in the final state come from the � and f0ð980Þ scalar
mesons. The obtained value for the width is �Y!J=c�� �
ð4:1� 0:6Þ MeV, which is much smaller than the total
experimental width: �exp � ð95� 14Þ MeV [44].

To compare the decay width into the J=c�� channel
with the total width we have to consider other possible
decay channels. With the mixed current, the main decay
channel of the Yð4260Þ should be into D mesons, mostly
due to the charmonium part of the current, but also
from the tetraquark part through quark rearrangement.
Therefore, the total width of the Yð4260Þ should be given
by the sum of the partial widths of all these channels.
Unfortunately, the approach used here does not allow us
to evaluate the decay channels into D mesons, since one
can only use the QCDSR approach to study properties of
the low-lying state. Therefore, the charmonium part of the
current can only be used to study the decay of J=c .
However, if one considers the experimental upper limits,

from BABAR [11] and CLEO [50] collaborations, for the
branching ratios

BðYð4260Þ ! XÞ
BðYð4260Þ ! J=c��Þ ; (42)

where X ¼ D �D, D �D�, and D� �D�, one can see that the
width obtained here, for the J=c�� channel, is consistent
with the total experimental width of the Yð4260Þ.
Therefore, we conclude that it is a possibility to explain
the Yð4260Þ exotic state as a mixed charmonium-tetraquark
state.

TABLE III. Coupling constant gYc f0ð980Þ values and its corre-
sponding form factors, for different values of

ffiffiffiffiffi
s0

p
.

ffiffiffiffiffi
s0

p
(GeV)

gYc f0 ðQ2Þ
(GeV�1)

gYc f0 ðQ2 ¼ �m2
f0
Þ

(GeV�1)

4.6 0:28
Q2þ2:06

0.26

4.7 0:29
Q2þ2:09

0.26

4.8 0:29
Q2þ2:12

0.26
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APPENDIX: THE SPECTRAL DENSITIES FOR CHARMONIUM AND TETRAQUARK

Next, we list all the spectral densities that appear in Eqs. (12)–(14) for charmonium�22
1 ðM2

BÞ, tetraquark�44
1 ðM2

BÞ state
as well as the mixed terms �24

1 ðM2
BÞ and �42

1 ðM2
BÞ. The contributions for the last two are equal, that is,

�24
1 ðM2

BÞ ¼ �42
1 ðM2

BÞ.
For the charmonium contribution, the spectral densities are written below [24]

�pert
22 ðsÞ ¼ sh �qqi2

23�2
ð1þ 2m2

c=sÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

c=s
q

; (A1)

�hG2i
22 ðM2

BÞ ¼ � hg2sG2ih �qqi2
3 � 26�2

Z 1

0
d


�
2þm2

cð1� 7
� 2
2Þ

ð1� 
Þ2M2

B

þ 4m4
c

M4
Bð1� 
Þ3

�
e
� m2

c

M2
B

ð1�
Þ: (A2)

For the tetraquark we have

�pert
44 ðsÞ ¼ � 1

3 � 210�6

Z 
max


min

d



3

Z 1�


�min

d�

�3
F3ð1� 
� �Þð2m2

cð1� 
� �Þ2 � 3Fð1þ 
þ �ÞÞ; (A3)

�h �qqi
44 ðsÞ ¼ 0; (A4)

�hG2i
44 ðsÞ ¼ � hg2sG2i

32 � 211�6

Z 
max


min

d





Z 1�


�min

d�

�3
� ½2m4

c
ð1� 
� �Þ3 � 3m2
cFð1� 
� �Þ

� ð2
2 þ 
ð8þ 3�Þ þ �ð1þ �Þ � 2Þ þ þ6F2�ð1� 2
� 2�Þ�; (A5)

�h �qGqi
44 ðsÞ ¼ � h �qGqi

3 � 27�4

�
3mc

Z 
max


min

d



2

Z 1�


�min

d�

�
F½
2 � 
ð1þ �Þ � 2�2�

þms

Z 
max


min

d


�
16m2

c þ 2H

�
1� 





�
�

Z 1�


�min

d�

�
ðm2

cð9� 3
� 5�Þ þ 7FÞ
��
; (A6)

�h �qqi2
44 ðsÞ¼ sh �qqi2

32 �24�2
ð1�16m2

c=sÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�4m2

c=s
q

; (A7)

�h8i
44 ðsÞ ¼ � h �qqih �qGqi

3 � 25�2

Z 
max


min

d

ð5� 6
Þ; (A8)

�h8i
44 ðM2

BÞ ¼ �m2
ch �qqih �qGqi
3 � 24�2

�
Z 1

0
d


�

2 � 2m2

c

M2
B
ð1� 
Þ

�
e
� m2

c

M2
B

ð1�
Þ: (A9)

Finally, for the mixed term we have

�h �qqi
24 ðsÞ ¼ � sh �qqi2

3 � 23�2
ð1þ 2m2

c=sÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

c=s
q

; (A10)

�h �qGqi
24 ðM2

BÞ ¼ �m2
ch �qqih �qGqi
3 � 23�2

Z 1

0

d




e
� m2

c

M2
B

ð1�
Þ: (A11)

In all these expressions we have used the following
definitions:

F ¼ ð
þ �Þm2
c � 
�s; (A12)

H ¼ m2
c � 
ð1� 
Þs; (A13)

and the integration limits are:


min ¼ 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

c=s
p

2
; (A14)


max ¼ 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

c=s
p

2
; (A15)

�min ¼ 
m2
c

ðs
�m2
cÞ
: (A16)
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