93 research outputs found

    Interleukin 18 in the CNS

    Get PDF
    Interleukin (IL)-18 is a cytokine isolated as an important modulator of immune responses and subsequently shown to be pleiotropic. IL-18 and its receptors are expressed in the central nervous system (CNS) where they participate in neuroinflammatory/neurodegenerative processes but also influence homeostasis and behavior. Work on IL-18 null mice, the localization of the IL-18 receptor complex in neurons and the neuronal expression of decoy isoforms of the receptor subunits are beginning to reveal the complexity and the significance of the IL-18 system in the CNS. This review summarizes current knowledge on the central role of IL-18 in health and disease

    The screening for depression and neurocognitive disorders in subjects newly diagnosed with HIV

    Get PDF
    Background Inflammatory mediators may be relevant to explain the frequent comorbidity between depression, neurocognitive disorders and HIV. HIV induces activation of inflammatory mediators, mainly cytokines, that have been involved in the onset of depression and response to antidepressant treatment. Aim To identify recurring profiles of inflammatory biomarkers subtending depression, effectiveness of antidepressants and neurocognitive disorders among HIV-infected individuals. Methods All adult newly HIV-diagnosed out-patients attending HIV clinics in three towns of Northern Italy were screened, assessed for depression and studied immunologically and for neurocognitive disorders. Results Twenty-five patients have been enrolled so far: of these, 35% were positive to PHQ-9 screening, of which 6 were positive to the diagnostic assessment for depression. No neurocognitive disorders were found among the patients. As the project will develop, it is expected that frequency of depression, neurocognitive disorders and effective antidepressant treatment will be found to correlate to the profile of immune biomarkers. These findings might help to understand the etiology of depression in HIV, and specifically the role of inflammation and immunological changes

    Molecular changes associated with escitalopram response in a stress-based model of depression

    Get PDF
    Converging evidence points at hypothalamus-pituitary-adrenal (HPA) axis hyperactivity and neuroinflammation as important factors involved in the etiopathogenesis of major depressive disorder (MDD) and in therapeutic efficacy of antidepressants. In this study, we examined the molecular effects associated with a response to a week-long treatment with escitalopram in the chronic escape deficit (CED) model, a validated model of depression based on the induction of an escape deficit after exposure of rats to an unavoidable stress. We confirmed our previous result that a treatment with escitalopram (10 mg/kg) was effective after 7 days in reverting the stress-induced escape deficit in approximately 50% of the animals, separating responders from non-responders. Expression of markers of HPA axis functionality as well as several inflammatory mediators were evaluated in the hypothalamus, a key structure integrating signals from the neuro, immune, endocrine systems. In the hypothalamus of responder animals we observed a decrease in the expression of CRH and its receptors and an increase in GR protein in total and nuclear extracts; this effect was accompanied by a significant decrease in circulating corticosterone in the same cohort. Hypothalamic IL-1\uce\ub2 and TNF\uce\ub1 expression were increased in stressed animals, while CXCL2, IL-6, and ADAM17 mRNA levels were decreased in escitalopram treated rats regardless of the treatment response. These data suggest that efficacy of a one week treatment with escitalopram may be partially mediated by a decrease HPA axis activity, while in the hypothalamus the drug-induced effects on the expression of immune modulators did not correlate with the behavioural outcome

    Hypothalamic expression of inflammatory mediators in an animal model of binge eating

    Get PDF
    Binge eating episodes are characterized by uncontrollable, distressing eating of a large amount of highly palatable food and represent a central feature of bingeing related eating disorders. Research suggests that inflammation plays a role in the onset and maintenance of eating-related maladaptive behavior. Markers of inflammation can be selectively altered in discrete brain region where they can directly or indirectly regulate food intake. In the present study we measured expression levels of different components of cytokine systems (IL-1, IL-6, IL-18, TNF-\uf061 and IFN-&3) and related molecules (iNOS and COX2) in the preoptic and anterior-tuberal parts of the hypothalamus of a validated animal model of binge eating. In this animal model, based on the exposure to both food restriction and frustration stress, binge-like eating behavior for highly palatable food is not shown when animals are exposed to the frustration stress during the estrus phase. We found a characteristic down-regulation of the IL-18/ IL-18 receptor system (with increased expression of the inhibitor of the pro-inflammatory cytokine IL18, IL-18BP, together with a decreased expression of the binding chain of the IL-18 receptor) and a three-fold increase in the expression of iNOS specifically in the anterior- tuberal region of the hypothalamus of animals that develop a binge-like eating behavior. Differently, when food restricted animals were stressed during the estrus phase IL-18 expression increased while iNOS expression was not significantly affected. Considering the role of this region of the hypothalamus in controlling feeding related behavior, this can be relevant in eating disorders and obesity. Our data suggest that by targeting centrally selected inflammatory markers, we may prevent that disordered eating turns into a full blown eating disorder

    Disease-induced neuroinflammation and depression

    Get PDF
    Progression of major depression, a multifactorial disorder with a neuroinflammatory signature, seems to be associated with the disruption of body allostasis. High rates of comorbidity between depression and specific medical disorders, such as, stroke, chronic pain conditions, diabetes mellitus, and human immunodeficiency virus (HIV) infection, have been extensively reported. In this review, we discuss how these medical disorders may predispose an individual to develop depression by examining the impact of these disorders on some hallmarks of neuroinflammation known to be impaired in depressed patients: altered permeability of the blood brain barrier, immune cells infiltration, activated microglia, increased cytokines production, and the role of inflammasomes. In all four pathologies, blood brain barrier integrity was altered, allowing the infiltration of peripheral factors, known to activate resident microglia. Evidence indicated morphological changes in the glial population, increased levels of circulating pro-inflammatory cytokines or increased production of these mediators within the brain, all fundamental in neuroinflammation, for the four medical disorders considered. Moreover, activity of the kynurenine pathway appeared to be enhanced. With respect to the inflammasome NLRP3, a new target whose role in neuroinflammation is emerging as being important, accumulating data suggest its involvement in the pathogenesis of brain injury following stroke, chronic pain conditions, diabetes mellitus or in HIV associated immune impairment. Finally, data gathered over the last 10 years, indicate and confirm that depression, stroke, chronic pain, diabetes, and HIV infection share a combination of underlying molecular, cellular and network mechanisms leading to a general increase in the neuroinflammatory burden for the individual

    The transporters GlyT2 and VIAAT cooperate to determine the vesicular glycinergic phenotype

    Get PDF
    The mechanisms that specify the vesicular phenotype of inhibitory interneurons in vertebrates are poorly understood because the two main inhibitory transmitters, glycine and GABA, share the same vesicular inhibitory amino acid transporter (VIAAT) and are both present in neurons during postnatal development. We have expressed VIAAT and the plasmalemmal transporters for glycine and GABA in a neuroendocrine cell line and measured the quantal release of glycine and GABA using a novel double-sniffer patch-clamp technique. We found that glycine is released from vesicles when VIAAT is coexpressed with either the neuronal transporter GlyT2 or the glial transporter GlyT1. However, GlyT2 was more effective than GlyT1, probably because GlyT2 is unable to operate in the reverse mode, which gives it an advantage in maintaining the high cytosolic glycine concentration required for efficient vesicular loading by VIAAT. The vesicular inhibitory phenotype was gradually altered from glycinergic to GABAergic through mixed events when GABA is introduced into the secretory cell and competes for uptake by VIAAT. Interestingly, the VIAAT ortholog from Caenorhabditis elegans (UNC-47), a species lacking glycine transmission, also supports glycine exocytosis in the presence of GlyT2, and a point mutation of UNC-47 that abolishes GABA transmission in the worm confers glycine specificity. Together, these results suggest that an increased cytosolic availability of glycine in VIAAT-containing terminals was crucial for the emergence of glycinergic transmission in vertebrates

    Prevalence of metabolic syndrome and of symptoms of anxiety and depression in patients undergoing colonoscopy

    Get PDF
    Introduction Metabolic syndrome (MetS) is defined by metabolic and cardio-vascular impairments and is frequently associated with anxiety and depressive disorders. Both MetS and anxiety-depressive syndromes feature similar systemic inflammatory alterations. Inflammation of the large bowel is also a key factor for the development of colorectal cancer (CRC). Objective To measure the prevalence of MetS and symptoms of anxiety and depression among patients undergoing colonoscopy. Methods Cross-sectional study. Patients undergoing colonoscopy aged 40 or more, with negative history for neoplasia or inflammatory bowel disease, were enrolled. Data collected: colonoscopy outcome, presence/absence of MetS (IDF and ATP III criteria), presence/absence of depressive and anxiety symptoms assessed with HADS. Results The sample was made up of 53 patients (female 24, 45.3%). Mean age was 60.66 ± 9.08. At least one adenoma was found to 23 patients (43.3%). Prevalence of MetS ranged from 34% to 36% (ATP III and IDF criteria, respectively). Prevalence of depressive and anxiety symptoms was 20% and 33%, respectively. Conclusion Prevalence of MetS, anxiety and depressive symptoms among patients undergoing colonoscopy was higher than in the general population

    Identification and characterization of the kynurenine pathway in the pond snail Lymnaea stagnalis

    Get PDF
    Dysregulation of the kynurenine pathway (KP) is implicated in many human diseases and disorders, from immunological, metabolic, neurodegenerative, and neuropsychiatric conditions to cancer, and represents an appealing target for new therapeutic approaches. In this intricate scenario, invertebrates, like Lymnaea stagnalis (LS), provide a flexible tool to unravel the complexity of the KP. Starting from the available LS genome and transcriptome, we identified putative transcripts of all KP enzymes containing an ORF; each predicted protein possessed a high degree of sequence conservation to known orthologues of other invertebrate and vertebrate model organisms. Sequences were confirmed by qualitative PCR and sequencing. At the same time, the qRT-PCR analysis revealed that Lym IDO-like, Lym TDO-like, Lym AFMID-like, Lym KMO-like, Lym AADAT-like, Lym KYAT I/III-like, Lym KYNU-like, Lym HAAO-like, and Lym ACMSD-like showed widespread tissue expression. Then, tryptophan, kynurenine, kynurenic acid, anthranilic acid, 3-hydroxy-kynurenine, xanthurenic acid, picolinic acid, and quinolinic acid were identified in the hemolymph of LS by UHPLC-Q exactive mass spectrometer. Our study provides the most thorough characterization to date of the KP in an invertebrate model, supporting the value of LS for future functional studies of this pathway at the cellular, synaptic, and behavioral levels
    • …
    corecore