9 research outputs found

    The Role of BPIFB4 in Immune System and Cardiovascular Disease: The Lesson from Centenarians

    No full text
    : Recent discoveries have shed light on the participation of the immune system in the physio pathology of the cardiovascular system underpinning the importance of keeping the balance of the first to preserve the latter. Aging, along with other risk factors, can challenge such balance triggering the onset of cardiovascular diseases. Among several mediators ensuring the proper cross-talk between the two systems, bactericidal/permeability-increasing fold-containing family B member 4 (BPIFB4) has been shown to have a pivotal role, also by sustaining important signals such as eNOS and PKC-alpha. In addition, the Longevity-associated variant (LAV), which is an haplotype allele in BPIFB4 characterized by 4 missense polymorphisms, enriched in homozygosity in Long Living Individuals (LLIs), has been shown to be efficient, if administered systemically through gene therapy, in improving many aspects of cardiovascular diseases (CVDs). This occurs mainly through a fine immune system remodeling across: 1) a M2 macrophage polarizing effect, 2) a favorable redistribution of the circulating monocyte cell subsets and 3) the reduction of T-cell activation. Furthermore, LAV-BPIFB4 treatment induced a desirable recovery of the inflammatory balance by mitigating the pro-inflammatory factor levels and enhancing the anti-inflammatory boost through a mechanism that is partially dependent on SDF-1/CXCR4 axis. Importantly, the remarkable effects of LAV-BPIFB4 treatment, which translates in increased BPIFB4 circulating levels, mirror what occurs in long-living individuals (LLIs) in whom the high circulating levels of BPIFB4 are protective from age-related and CVDs and emphasize the reason why LLIs are considered a model of successful aging. Here, we review the mechanisms by which LAV-BPIFB4 exerts its immunomodulatory activity in improving the cardiovascular-immune system dialogue that might strengthen its role as a key mediator in CVDs

    A model of evolutionary selection: The cardiovascular protective function of the longevity associated variant of BPIFB4

    No full text
    Evolutionary forces select genetic variants that allow adaptation to environmental stresses. The genomes of centenarian populations could recapitulate the evolutionary adaptation model and reveal the secrets of disease resistance shown by these individuals. Indeed, longevity phenotype is supposed to have a genetic background able to survive or escape to age-related diseases. Among these, cardiovascular diseases (CVDs) are the most lethal and their major risk factor is aging and the associated frailty status. One example of genetic evolution revealed by the study of centenarians genome is the four missense Single Nucleotide Polymorphisms (SNPs) haplotype in bactericidal/permeability-increasing fold-containing family B, member 4 (BPIFB4) locus that is enriched in long living individuals: the longevity associated variant (LAV). Indeed, LAV-BPIFB4 is able to improve endothelial function and revascularization through the increase of endothelial nitric oxide synthase (eNOS) dependent nitric oxide production. This review recapitulates the beneficial effects of LAV-BPIFB4 and its therapeutic potential for the treatment of CVDs

    Transfer of the longevity-associated variant of BPIFB4 gene rejuvenates immune system and vasculature by a reduction of CD38+ macrophages and NAD+ decline

    No full text
    : As we age, our body experiences chronic, systemic inflammation contributing to the morbidity and mortality of the elderly. The senescent immune system has been described to have a causal role in driving systemic aging and therefore may represent a key therapeutic target to prevent pathological consequences associated with aging and extend a healthy lifespan. Previous studies from our group associated a polymorphic haplotype variant in the BPIFB4 gene (LAV-BPIFB4) with exceptional longevity. Transfer of the LAV-BPIFB4 in preclinical models halted the progression of cardiovascular diseases (CVDs) and frailty by counterbalancing chronic inflammation. In the present study, we aimed to delineate the action of systemic adeno-associated viral vector-mediated LAV-BPIFB4 gene transfer (AAV-LAV-BPIFB4) on the deleterious age-related changes of the immune system and thereby the senescence-associated events occurring in C57BL/6J mice aged 26 months. Our in vivo data showed that 26-months-old mice had a higher frequency of CD45+SA-beta Gal+ immune cells in peripheral blood than young (4-months-old) C57BL/6J mice. Notably, AAV-LAV-BPIFB4 gene transfer in aged mice reduced the pool of peripheral immunosenescent cells that were shown to be enriched in the spleen. In addition, the proper tuning of the immune secretory phenotype (IL1βlow, IL6low, IL10high) associated with a significant reduction in SA-beta Gal-positive area of aorta from AAV-LAV treated mice. At the functional level, the reduction of senescence-associated inflammation ensured sustained NAD+ levels in the plasma of AAV-LAV-BPIFB4 old mice by preventing the NADase CD38 increase in F4/80+ tissue-resident macrophages and Ly6Chigh pro-inflammatory monocytes of the spleen and bone marrow. Finally, to validate the clinical implication of our findings, we showed that Long-living-individuals (LLIs, >95 years), which delay CVDs onset, especially if LAV-carriers, were characterized by high NAD+ levels. In conclusion, the new senotherapeutic action of LAV-BPIFB4 may offer a valuable therapeutic tool to control aging and reduce the burden of its pathophysiological disorders, such as CVDs

    Data set related to the article "Circulating BPIFB4 Levels Associate With and Influence the Abundance of Reparative Monocytes and Macrophages in Long Living Individuals"

    No full text
    This record contains raw data related to the article "Circulating BPIFB4 Levels Associate With and Influence the Abundance of Reparative Monocytes and Macrophages in Long Living Individuals" Abstract Long-Living Individuals (LLIs) delay aging and are less prone to chronic inflammatory reactions. Whether a distinct monocytes and macrophages repertoire is involved in such a characteristic remains unknown. Previous studies from our group have shown high levels of the host defense BPI Fold Containing Family B Member 4 (BPIFB4) protein in the peripheral blood of LLIs. Moreover, a polymorphic variant of the BPIFB4gene associated with exceptional longevity (LAV-BPIFB4) confers protection from cardiovascular diseases underpinned by low-grade chronic inflammation, such as atherosclerosis. We hypothesize that BPIFB4 may influence monocytes pool and macrophages skewing, shifting the balance toward an anti-inflammatory phenotype. We profiled circulating monocytes in 52 LLIs (median-age 97) and 52 healthy volunteers (median-age 55) using flow cytometry. If the frequency of total monocyte did not change, the intermediate CD14++CD16+ monocytes counts were lower in LLIs compared to control adults. Conversely, non-classical CD14+CD16++ monocyte counts, which are M2 macrophage precursors with an immunomodulatory function, were found significantly associated with the LLIs' state. In a differentiation assay, supplementation of the LLIs' plasma enhanced the capacity of monocytes, either from LLIs or controls, to acquire a paracrine M2 phenotype. A neutralizing antibody against the phosphorylation site (ser 75) of BPIFB4 blunted the M2 skewing effect of the LLIs' plasma. These data indicate that LLIs carry a peculiar anti-inflammatory myeloid profile, which is associated with and possibly sustained by high circulating levels of BPIFB4. Supplementation of recombinant BPIFB4 may represent a novel means to attenuate inflammation-related conditions typical of unhealthy aging

    Data set related to the article: "Transfer of the longevity-associated variant of BPIFB4 gene rejuvenates immune system and vasculature by a reduction of CD38+ macrophages and NAD+ decline"

    No full text
    As we age, our body experiences chronic, systemic inflammation contributing to the morbidity and mortality of the elderly. The senescent immune system has been described to have a causal role in driving systemic aging and therefore may represent a key therapeutic target to prevent pathological consequences associated with aging and extend a healthy lifespan. Previous studies from our group associated a polymorphic haplotype variant in the BPIFB4 gene (LAV-BPIFB4) with exceptional longevity. Transfer of the LAV-BPIFB4 in preclinical models halted the progression of cardiovascular diseases (CVDs) and frailty by counterbalancing chronic inflammation. In the present study, we aimed to delineate the action of systemic adeno-associated viral vector-mediated LAV-BPIFB4 gene transfer (AAV-LAV-BPIFB4) on the deleterious age-related changes of the immune system and thereby the senescence-associated events occurring in C57BL/6J mice aged 26 months. Our in vivo data showed that 26-months-old mice had a higher frequency of CD45+SA-beta Gal+ immune cells in peripheral blood than young (4-months-old) C57BL/6J mice. Notably, AAVLAV-BPIFB4 gene transfer in aged mice reduced the pool of peripheral immunosenescent cells that were shown to be enriched in the spleen. In addition, the proper tuning of the immune secretory phenotype (IL1βlow, IL6low, IL10high) associated with a significant reduction in SA-beta Gal-positive area of aorta from AAV-LAV treated mice. At the functional level, the reduction of senescenceassociated inflammation ensured sustained NAD+ levels in the plasma of AAV-LAV-BPIFB4 old mice by preventing the NADase CD38 increase in F4/80+ tissue-resident macrophages and Ly6Chigh pro-inflammatory monocytes of the spleen and bone marrow. Finally, to validate the clinical implication of our findings, we showed that Long-living-individuals (LLIs, >95 years), which delay CVDs onset, especially if LAV-carriers, were characterized by high NAD+ levels. In conclusion, the new senotherapeutic action of LAV-BPIFB4 may offer a valuable therapeutic tool to control aging and reduce the burden of its pathophysiological disorders, such as CVDs

    Data set related to the article: "Transfer of the longevity-associated variant of BPIFB4 gene rejuvenates immune system and vasculature by a reduction of CD38+ macrophages and NAD+ decline"

    No full text
    As we age, our body experiences chronic, systemic inflammation contributing to the morbidity and mortality of the elderly. The senescent immune system has been described to have a causal role in driving systemic aging and therefore may represent a key therapeutic target to prevent pathological consequences associated with aging and extend a healthy lifespan. Previous studies from our group associated a polymorphic haplotype variant in the BPIFB4 gene (LAV-BPIFB4) with exceptional longevity. Transfer of the LAV-BPIFB4 in preclinical models halted the progression of cardiovascular diseases (CVDs) and frailty by counterbalancing chronic inflammation. In the present study, we aimed to delineate the action of systemic adeno-associated viral vector-mediated LAV-BPIFB4 gene transfer (AAV-LAV-BPIFB4) on the deleterious age-related changes of the immune system and thereby the senescence-associated events occurring in C57BL/6J mice aged 26 months. Our in vivo data showed that 26-months-old mice had a higher frequency of CD45+SA-beta Gal+ immune cells in peripheral blood than young (4-months-old) C57BL/6J mice. Notably, AAVLAV-BPIFB4 gene transfer in aged mice reduced the pool of peripheral immunosenescent cells that were shown to be enriched in the spleen. In addition, the proper tuning of the immune secretory phenotype (IL1βlow, IL6low, IL10high) associated with a significant reduction in SA-beta Gal-positive area of aorta from AAV-LAV treated mice. At the functional level, the reduction of senescenceassociated inflammation ensured sustained NAD+ levels in the plasma of AAV-LAV-BPIFB4 old mice by preventing the NADase CD38 increase in F4/80+ tissue-resident macrophages and Ly6Chigh pro-inflammatory monocytes of the spleen and bone marrow. Finally, to validate the clinical implication of our findings, we showed that Long-living-individuals (LLIs, >95 years), which delay CVDs onset, especially if LAV-carriers, were characterized by high NAD+ levels. In conclusion, the new senotherapeutic action of LAV-BPIFB4 may offer a valuable therapeutic tool to control aging and reduce the burden of its pathophysiological disorders, such as CVDs
    corecore