22 research outputs found

    Detrended Fluctuation Analysis in the prediction of type 2 diabetes mellitus in patients at risk: Model optimization and comparison with other metrics

    Full text link
    [EN] Complexity analysis of glucose time series with Detrended Fluctuation Analysis (DFA) has been proved to be useful for the prediction of type 2 diabetes mellitus (T2DM) development. We propose a modified DFA algorithm, review some of its characteristics and compare it with other metrics derived from continuous glucose monitorization in this setting. Several issues of the DFA algorithm were evaluated: (1) Time windowing: the best predictive value was obtained including all time-windows from 15 minutes to 24 hours. (2) Influence of circadian rhythms: for 48-hour glucometries, DFA alpha scaling exponent was calculated on 24hour sliding segments (1-hour gap, 23-hour overlap), with a median coefficient of variation of 3.2%, which suggests that analysing time series of at least 24-hour length avoids the influence of circadian rhythms. (3) Influence of pretreatment of the time series through integration: DFA without integration was more sensitive to the introduction of white noise and it showed significant predictive power to forecast the development of T2DM, while the pretreated time series did not. (4) Robustness of an interpolation algorithm for missing values: The modified DFA algorithm evaluates the percentage of missing values in a time series. Establishing a 2% error threshold, we estimated the number and length of missing segments that could be admitted to consider a time series as suitable for DFA analysis. For comparison with other metrics, a Principal Component Analysis was performed and the results neatly tease out four different components. The first vector carries information concerned with variability, the second represents mainly DFA alpha exponent, while the third and fourth vectors carry essentially information related to the two "pre-diabetic behaviours" (impaired fasting glucose and impaired glucose tolerance). The scaling exponent obtained with the modified DFA algorithm proposed has significant predictive power for the development of T2DM in a high-risk population compared with other variability metrics or with the standard DFA algorithm.This study has been funded by Instituto de Salud Carlos III through the project PI17/00856 (Co-funded by the European Regional Development Fund, A way to make Europe). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Colás, A.; Vigil, L.; Vargas, B.; Cuesta Frau, D.; Varela, M. (2019). Detrended Fluctuation Analysis in the prediction of type 2 diabetes mellitus in patients at risk: Model optimization and comparison with other metrics. PLoS ONE. 14(12):1-15. https://doi.org/10.1371/journal.pone.0225817S1151412Goldstein, B., Fiser, D. H., Kelly, M. M., Mickelsen, D., Ruttimann, U., & Pollack, M. M. (1998). Decomplexification in critical illness and injury: Relationship between heart rate variability, severity of illness, and outcome. Critical Care Medicine, 26(2), 352-357. doi:10.1097/00003246-199802000-00040Varela, M. (2008). The route to diabetes: Loss of complexity in the glycemic profile from health through the metabolic syndrome to type 2 diabetes. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, Volume 1, 3-11. doi:10.2147/dmso.s3812Vikman, S., Mäkikallio, T. H., Yli-Mäyry, S., Pikkujämsä, S., Koivisto, A.-M., Reinikainen, P., … Huikuri, H. V. (1999). Altered Complexity and Correlation Properties of R-R Interval Dynamics Before the Spontaneous Onset of Paroxysmal Atrial Fibrillation. Circulation, 100(20), 2079-2084. doi:10.1161/01.cir.100.20.2079Wang, H., Naghavi, M., Allen, C., Barber, R. M., Bhutta, Z. A., Carter, A., … Coates, M. M. (2016). Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. The Lancet, 388(10053), 1459-1544. doi:10.1016/s0140-6736(16)31012-1Saudek, C. D., Derr, R. L., & Kalyani, R. R. (2006). Assessing Glycemia in Diabetes Using Self-monitoring Blood Glucose and Hemoglobin A1c. JAMA, 295(14), 1688. doi:10.1001/jama.295.14.1688Monnier, L., Colette, C., & Owens, D. R. (2008). Glycemic Variability: The Third Component of the Dysglycemia in Diabetes. Is it Important? How to Measure it? Journal of Diabetes Science and Technology, 2(6), 1094-1100. doi:10.1177/193229680800200618Abdul-Ghani, M. A., Tripathy, D., & DeFronzo, R. A. (2006). Contributions of  -Cell Dysfunction and Insulin Resistance to the Pathogenesis of Impaired Glucose Tolerance and Impaired Fasting Glucose. Diabetes Care, 29(5), 1130-1139. doi:10.2337/dc05-2179(2017). 2. Classification and Diagnosis of Diabetes:Standards of Medical Care in Diabetes—2018. Diabetes Care, 41(Supplement 1), S13-S27. doi:10.2337/dc18-s002Tabák, A. G., Herder, C., Rathmann, W., Brunner, E. J., & Kivimäki, M. (2012). Prediabetes: a high-risk state for diabetes development. The Lancet, 379(9833), 2279-2290. doi:10.1016/s0140-6736(12)60283-9DeFronzo, R. A., Banerji, M. A., Bray, G. A., Buchanan, T. A., Clement, S., … Tripathy, D. (2009). Determinants of glucose tolerance in impaired glucose tolerance at baseline in the Actos Now for Prevention of Diabetes (ACT NOW) study. Diabetologia, 53(3), 435-445. doi:10.1007/s00125-009-1614-2Nathan, D. M., Davidson, M. B., DeFronzo, R. A., Heine, R. J., Henry, R. R., Pratley, R., & Zinman, B. (2007). Impaired Fasting Glucose and Impaired Glucose Tolerance: Implications for care. Diabetes Care, 30(3), 753-759. doi:10.2337/dc07-9920Ogata, H., Tokuyama, K., Nagasaka, S., Tsuchita, T., Kusaka, I., Ishibashi, S., … Yamamoto, Y. (2012). The lack of long-range negative correlations in glucose dynamics is associated with worse glucose control in patients with diabetes mellitus. Metabolism, 61(7), 1041-1050. doi:10.1016/j.metabol.2011.12.007Kohnert, K.-D. (2015). Utility of different glycemic control metrics for optimizing management of diabetes. World Journal of Diabetes, 6(1), 17. doi:10.4239/wjd.v6.i1.17García Maset, L., González, L. B., Furquet, G. L., Suay, F. M., & Marco, R. H. (2016). Study of Glycemic Variability Through Time Series Analyses (Detrended Fluctuation Analysis and Poincaré Plot) in Children and Adolescents with Type 1 Diabetes. Diabetes Technology & Therapeutics, 18(11), 719-724. doi:10.1089/dia.2016.0208Service, F. J., O’Brien, P. C., & Rizza, R. A. (1987). Measurements of Glucose Control. Diabetes Care, 10(2), 225-237. doi:10.2337/diacare.10.2.225Goldberger, A. L., Amaral, L. A. N., Hausdorff, J. M., Ivanov, P. C., Peng, C.-K., & Stanley, H. E. (2002). Fractal dynamics in physiology: Alterations with disease and aging. Proceedings of the National Academy of Sciences, 99(Supplement 1), 2466-2472. doi:10.1073/pnas.012579499Crenier, L., Lytrivi, M., Van Dalem, A., Keymeulen, B., & Corvilain, B. (2016). Glucose Complexity Estimates Insulin Resistance in Either Nondiabetic Individuals or in Type 1 Diabetes. The Journal of Clinical Endocrinology & Metabolism, 101(4), 1490-1497. doi:10.1210/jc.2015-4035Rodríguez de Castro, C., Vigil, L., Vargas, B., García Delgado, E., García Carretero, R., Ruiz-Galiana, J., & Varela, M. (2016). Glucose time series complexity as a predictor of type 2 diabetes. Diabetes/Metabolism Research and Reviews, 33(2), e2831. doi:10.1002/dmrr.2831Weber, C., & Schnell, O. (2009). The Assessment of Glycemic Variability and Its Impact on Diabetes-Related Complications: An Overview. Diabetes Technology & Therapeutics, 11(10), 623-633. doi:10.1089/dia.2009.0043Pincus, S. M., Gladstone, I. M., & Ehrenkranz, R. A. (1991). A regularity statistic for medical data analysis. Journal of Clinical Monitoring, 7(4), 335-345. doi:10.1007/bf01619355Richman, J. S. (2007). Sample Entropy Statistics and Testing for Order in Complex Physiological Signals. Communications in Statistics - Theory and Methods, 36(5), 1005-1019. doi:10.1080/03610920601036481Platiša, M. M., Bojić, T., Pavlović, S. U., Radovanović, N. N., & Kalauzi, A. (2016). Generalized Poincaré Plots-A New Method for Evaluation of Regimes in Cardiac Neural Control in Atrial Fibrillation and Healthy Subjects. Frontiers in Neuroscience, 10. doi:10.3389/fnins.2016.00038García-Puig, J., Ruilope, L. M., Luque, M., Fernández, J., Ortega, R., & Dal-Ré, R. (2006). Glucose Metabolism in Patients with Essential Hypertension. The American Journal of Medicine, 119(4), 318-326. doi:10.1016/j.amjmed.2005.09.010Lepot, M., Aubin, J.-B., & Clemens, F. (2017). Interpolation in Time Series: An Introductive Overview of Existing Methods, Their Performance Criteria and Uncertainty Assessment. Water, 9(10), 796. doi:10.3390/w9100796Eke, A., Hermán, P., Bassingthwaighte, J., Raymond, G., Percival, D., Cannon, M., … Ikrényi, C. (2000). Physiological time series: distinguishing fractal noises from motions. Pflügers Archiv - European Journal of Physiology, 439(4), 403-415. doi:10.1007/s004249900135Eke, A., Herman, P., Kocsis, L., & Kozak, L. R. (2002). Fractal characterization of complexity in temporal physiological signals. Physiological Measurement, 23(1), R1-R38. doi:10.1088/0967-3334/23/1/201King, A. B., Philis-Tsimikas, A., Kilpatrick, E. S., Langbakke, I. H., Begtrup, K., & Vilsbøll, T. (2017). A Fixed Ratio Combination of Insulin Degludec and Liraglutide (IDegLira) Reduces Glycemic Fluctuation and Brings More Patients with Type 2 Diabetes Within Blood Glucose Target Ranges. Diabetes Technology & Therapeutics, 19(4), 255-264. doi:10.1089/dia.2016.0405Colas, A., Vigil, L., Rodríguez de Castro, C., Vargas, B., & Varela, M. (2018). New insights from continuous glucose monitoring into the route to diabetes. Diabetes/Metabolism Research and Reviews, 34(5), e3002. doi:10.1002/dmrr.3002Henriques, T., Munshi, M. N., Segal, A. R., Costa, M. D., & Goldberger, A. L. (2014). «Glucose-at-a-Glance». Journal of Diabetes Science and Technology, 8(2), 299-306. doi:10.1177/1932296814524095Hinton, P. R. (2004). Statistics Explained. doi:10.4324/9780203496787Van Cauter, E., Blackman, J. D., Roland, D., Spire, J. P., Refetoff, S., & Polonsky, K. S. (1991). Modulation of glucose regulation and insulin secretion by circadian rhythmicity and sleep. Journal of Clinical Investigation, 88(3), 934-942. doi:10.1172/jci115396Qian, J., & Scheer, F. A. J. L. (2016). Circadian System and Glucose Metabolism: Implications for Physiology and Disease. Trends in Endocrinology & Metabolism, 27(5), 282-293. doi:10.1016/j.tem.2016.03.00

    Hemodynamic tolerance of exercise with virtual reality performed during the first versus the second part of the hemodialysis session

    No full text
    Background and Aims It is recommended intradialysis exercise implementation in the first part of the HD session to avoid hemodynamic instability or cramping, but the time restriction to exercise worsens clinical feasibility of exercise as a routine. Exercise using non-immersive virtual reality is a novel rehabilitation method for patients undergoing hemodialysis treatment. This method has shown in a pilot study improved physical function and health-related quality of life. Objective: to determine effect of exercise with virtual reality during the first two hours and the last two hours of dialysis session on hemodynamic control. Method The design was a randomized clinical trial. Patients were randomized to exercise in the first (Start group) or last two hours (End group) of dialysis session. Intradialysis exercise consisted of a video game adapted to dialysis: Treasure hunting. It is a non-immersive virtual reality game in which the patient must catch some objectives avoiding obstacles by moving the lower limbs. The exercise session lasted from 20 to 40 minutes. Intensity was checked through the rate of perceived exertion. Heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), episodes of hypotension and episodes of clinical instability are monitored throughout the session. The intervention has already begun and will continue for twelve months. The control analysis is performed during the three months at rest prior to starting the intervention (Rest) and then the intervention begins, every three months. Now we present the results at thirth month with exercise (Exercise) . An mixed ANOVA of repeated measures is used to assess the effect of the intervention. Results 43 patients participated, 11 dropouts, 17 in Start group and 15 in End group. Mean age 73 years, males 28. The mean baseline (SD) was Body Mass Index 26.2 (5.5) kg/m2, Overhydration 2.1 (1.3) liters, Kt/V was 1.65 (SD 0.21), Serum Albumin 3.84 (0.29) mg/dl and Hemoglobin 11.81(1.27) g/dl . Analysis by time Rest versus Exercise showed as mean (SD): HR 64 (8) vs 64 (7) bpm, SBP 143 (18) vs 141 (18) mmHg and DBP 61 (10) vs 60 (11) mmHg, no significant differences. The change in measurements at the end of dialysis showed in Rest vs Exercise were HR – 1.34 (5.7) vs -0.9 (5.9) bpm, SBP 1.2 (12) vs 2.65 (16) mmHg and DBP 2.65 (5.8) vs 1.09 (7.1) mmHg, no significant differences. Analysis by groups Start versus End showed as means (CI95%): HR 66 (62,69) vs 63 (59,67) bpm, SBP 145 (136,154) vs 136 (126,146) mmHg and DBP 63 (58,68) vs 56 (50,62) mmHg, no significant differences. The change in measurements at the end of dialysis showed in Start group vs End group neither showed significant differences. There were no differences between the groups regarding episodes of hypotension or clinical instability. Conclusion Performing intradialysis with virtual reality is well tolerated at any time during the session. This result improves the opportunities to implement exercise in hemodialysis.Sin financiación5.992 JCR (2020) Q1, 3/25 Transplantation1.654 SJR (2020) Q1, 211/2446 Medicine (miscellaneous)No data IDR 2020UE

    Performance of the preliminary classification criteria for cryoglobulinaemic vasculitis and clinical manifestations in hepatitis C virus-unrelated cryoglobulinaemic vasculitis.

    No full text
    Abstract BACKGROUND: Cryoglobulinaemic vasculitis (CV) is often related to hepatitis C virus (HCV) infection, but it can develop in other diseases (e.g. other infections, connective tissue diseases, malignancies) in the absence of HCV infection. A comparison of the performance of the recently published classification criteria for the CV was made between HCV-positive and HCV negative patients with serum cryoglobulins. METHODS: 500 patients with serum cryoglobulins were studied. Their mean age was 60.77\ub113.75 years, they were 356 females (71.2%) and 144 males (28.8%). CV was diagnosed in 272 patients (54.4%), while other diseases associated with serum cryoglobulins without CV (CwV) were diagnosed in 228 patients (45.6%). RESULTS: 117 HCV negative patients were collected (23.4%) and they were 42/272 (15.4%) among the CV group, while they were 75/228 (32.9%) among the CwV. In HCV negative patients the sensitivity and specificity of the classification criteria of CV were 89.5% CI 95% [79.5-99.5] and 90.3% CI 95% [82.8-97.8], respectively, while in HCV positive patients they were 88.3% CI 95% [83.6%-93.1%] and 96.1% CI 95% [91.8-100], respectively. The most frequent disease recognised among the HCV negative patients was Sj\uf6gren's syndrome (SS) (55/117, 47.0%), and the sensitivity and the specificity of the CV classification criteria were 88.9% CI 95% [76.5-100] and 91.3% CI 95% [79.2-100], respectively. CONCLUSIONS: The classification criteria for CV showed a good performance even in HCV-unrelated patients. A slightly lower specificity was observed for the classification of HCV-unrelated CV, since some clinical manifestations included in the clinical item for the classification criteria occurred more frequently in HCV-negative rather than HCV-positive controls with CWV
    corecore