29,339 research outputs found

    Non-adiabatic corrections to elastic scattering of halo nuclei

    Full text link
    We derive the formalism for the leading order corrections to the adiabatic approximation to the scattering of composite projectiles. Assuming a two-body projectile of core plus loosely-bound valence particle and a model (the core recoil model) in which the interaction of the valence particle and the target can be neglected, we derive the non-adiabatic correction terms both exactly, using a partial wave analysis, and using the eikonal approximation. Along with the expected energy dependence of the corrections, there is also a strong dependence on the valence-to-core mass ratio and on the strength of the imaginary potential for the core-target interaction, which relates to absorption of the core in its scattering by the target. The strength and diffuseness of the core-target potential also determine the size of the corrections. The first order non-adiabatic corrections were found to be smaller than qualitative estimates would expect. The large absorption associated with the core-target interaction in such halo nuclei as Be11 kills off most of the non-adiabatic corrections. We give an improved estimate for the range of validity of the adiabatic approximation when the valence-target interaction is neglected, which includes the effect of core absorption. Some consideration was given to the validity of the eikonal approximation in our calculations.Comment: 14 pages with 10 figures, REVTeX4, AMS-LaTeX v2.13, submitted to Phys. Rev.

    Sharing data from clinical trials: the rationale for a controlled access approach.

    Get PDF
    The move towards increased transparency around clinical trials is welcome. Much focus has been on under-reporting of trials and access to individual patient data to allow independent verification of findings. There are many other good reasons for data sharing from clinical trials. We describe some key issues in data sharing, including the challenges of open access to data. These include issues in consent and disclosure; risks in identification, including self-identification; risks in distorting data to prevent self-identification; and risks in analysis. These risks have led us to develop a controlled access policy, which safeguards the rights of patients entered in our trials, guards the intellectual property rights of the original researchers who designed the trial and collected the data, provides a barrier against unnecessary duplication, and ensures that researchers have the necessary resources and skills to analyse the data

    Effects of an induced three-body force in the incident channel of (d,p) reactions

    Get PDF
    A widely accepted practice for treating deuteron breakup in A(d,p)BA(d,p)B reactions relies on solving a three-body A+n+pA+n+p Schr\"odinger equation with pairwise AA-nn, AA-pp and nn-pp interactions. However, it was shown in [Phys. Rev. C \textbf{89}, 024605 (2014)] that projection of the many-body A+2A+2 wave function into the three-body A+n+pA+n+p channel results in a complicated three-body operator that cannot be reduced to a sum of pairwise potentials. It contains explicit contributions from terms that include interactions between the neutron and proton via excitation of the target AA. Such terms are normally neglected. We estimate the first order contribution of these induced three-body terms and show that applying the adiabatic approximation to solving the A+n+pA+n+p model results in a simple modification of the two-body nucleon optical potentials. We illustrate the role of these terms for the case of 40^{40}Ca(d,pd,p)41^{41}Ca transfer reactions at incident deuteron energies of 11.8, 20 and 56 MeV, using several parameterisations of nonlocal optical potentials.Comment: 7 pages, 2 figures. Publication due in Phys. Rev.

    Discrete Accidental Symmetry for a Particle in a Constant Magnetic Field on a Torus

    Full text link
    A classical particle in a constant magnetic field undergoes cyclotron motion on a circular orbit. At the quantum level, the fact that all classical orbits are closed gives rise to degeneracies in the spectrum. It is well-known that the spectrum of a charged particle in a constant magnetic field consists of infinitely degenerate Landau levels. Just as for the 1/r1/r and r2r^2 potentials, one thus expects some hidden accidental symmetry, in this case with infinite-dimensional representations. Indeed, the position of the center of the cyclotron circle plays the role of a Runge-Lenz vector. After identifying the corresponding accidental symmetry algebra, we re-analyze the system in a finite periodic volume. Interestingly, similar to the quantum mechanical breaking of CP invariance due to the θ\theta-vacuum angle in non-Abelian gauge theories, quantum effects due to two self-adjoint extension parameters θx\theta_x and θy\theta_y explicitly break the continuous translation invariance of the classical theory. This reduces the symmetry to a discrete magnetic translation group and leads to finite degeneracy. Similar to a particle moving on a cone, a particle in a constant magnetic field shows a very peculiar realization of accidental symmetry in quantum mechanics.Comment: 25 pages, 2 figure

    Mother, I Didn\u27t Understand: Ballad

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-vp/2145/thumbnail.jp

    Large-amplitude coastal shelf waves

    Get PDF
    corecore