15,663 research outputs found

    REISCH: incorporating lightweight and reliable algorithms into healthcare applications of WSNs

    Get PDF
    Healthcare institutions require advanced technology to collect patients' data accurately and continuously. The tradition technologies still suffer from two problems: performance and security efficiency. The existing research has serious drawbacks when using public-key mechanisms such as digital signature algorithms. In this paper, we propose Reliable and Efficient Integrity Scheme for Data Collection in HWSN (REISCH) to alleviate these problems by using secure and lightweight signature algorithms. The results of the performance analysis indicate that our scheme provides high efficiency in data integration between sensors and server (saves more than 24% of alive sensors compared to traditional algorithms). Additionally, we use Automated Validation of Internet Security Protocols and Applications (AVISPA) to validate the security procedures in our scheme. Security analysis results confirm that REISCH is safe against some well-known attacks

    Electronic transport in a Cantor stub waveguide network

    Full text link
    We investigate theoretically, the character of electronic eigenstates and transmission properties of a one dimensional array of stubs with Cantor geometry. Within the framework of real space re-normalization group (RSRG) and transfer matrix methods we analyze the resonant transmission and extended wave-functions in a Cantor array of stubs, which lack translational order. Apart from resonant states with high transmittance we unravel a whole family of wave-functions supported by such an array clamped between two-infinite ordered leads, which have an extended character in the RSRG scheme, but, for such states the transmission coefficient across the lead-sample-lead structure decays following a power-law as the system grows in size. This feature is explained from renormalization group ideas and may lead to the possibility of trapping of electronic, optical or acoustic waves in such hierarchical geometries

    Recurrent Neural Networks with Top-k Gains for Session-based Recommendations

    Full text link
    RNNs have been shown to be excellent models for sequential data and in particular for data that is generated by users in an session-based manner. The use of RNNs provides impressive performance benefits over classical methods in session-based recommendations. In this work we introduce novel ranking loss functions tailored to RNNs in the recommendation setting. The improved performance of these losses over alternatives, along with further tricks and refinements described in this work, allow for an overall improvement of up to 35% in terms of MRR and Recall@20 over previous session-based RNN solutions and up to 53% over classical collaborative filtering approaches. Unlike data augmentation-based improvements, our method does not increase training times significantly. We further demonstrate the performance gain of the RNN over baselines in an online A/B test.Comment: CIKM'18, authors' versio

    An economic valuation of the Namibian recreational shore-angling fishery

    Get PDF
    A roving creel survey of recreational shore-anglers in Namibia was used to determine catch and effort of linefishing. A stratified sample of 240 anglers was surveyed to determine expenditures. Results showed that, between October 1996 and September 1997, some 8 800 anglers spent around 173 000 days angling and had direct expenditures of N29.7million.Inall,9329.7 million. In all, 93% of angling took place in the West Coast Recreational Area. Some 44% of anglers were foreign visitors who contributed 55% of the expenditures. Value added to gross national income within the shore-angling fishery was N14 million, equivalent to 3.6% of the value of the whole fisheries sector. The expenditures ultimately amounted (through a multiplier) to a gross national income of N3069perangler,orN3 069 per angler, or N27 million in aggregate. These amounts could be sustainable if policies to reduce fish mortality without affecting angler numbers are implemented

    Efficient and Secure ECDSA Algorithm and its Applications: A Survey

    Get PDF
    Public-key cryptography algorithms, especially elliptic curve cryptography (ECC)and elliptic curve digital signature algorithm (ECDSA) have been attracting attention frommany researchers in different institutions because these algorithms provide security andhigh performance when being used in many areas such as electronic-healthcare, electronicbanking,electronic-commerce, electronic-vehicular, and electronic-governance. These algorithmsheighten security against various attacks and the same time improve performanceto obtain efficiencies (time, memory, reduced computation complexity, and energy saving)in an environment of constrained source and large systems. This paper presents detailedand a comprehensive survey of an update of the ECDSA algorithm in terms of performance,security, and applications

    Preparation of atomically clean and flat Si(100) surfaces by low-energy ion sputtering and low-temperature annealing

    Full text link
    Si(100) surfaces were prepared by wet-chemical etching followed by 0.3-1.5keV Ar ion sputtering, either at elevated or room temperature. After a brief anneal under ultrahigh vacuum conditions, the resulting surfaces were examined by scanning tunneling microscopy. We find that wet-chemical etching alone cannot produce a clean and flat Si(100) surface. However, subsequent 300eV Ar ion sputtering at room temperature followed by a 973K anneal yields atomically clean and flat Si(100) surfaces suitable for nanoscale device fabrication.Comment: 13 pages, 3 figures, to be published in Applied Surface Scienc

    NASH: Neural Architecture Search for Hardware-Optimized Machine Learning Models

    Full text link
    As machine learning (ML) algorithms get deployed in an ever-increasing number of applications, these algorithms need to achieve better trade-offs between high accuracy, high throughput and low latency. This paper introduces NASH, a novel approach that applies neural architecture search to machine learning hardware. Using NASH, hardware designs can achieve not only high throughput and low latency but also superior accuracy performance. We present four versions of the NASH strategy in this paper, all of which show higher accuracy than the original models. The strategy can be applied to various convolutional neural networks, selecting specific model operations among many to guide the training process toward higher accuracy. Experimental results show that applying NASH on ResNet18 or ResNet34 achieves a top 1 accuracy increase of up to 3.1% and a top 5 accuracy increase of up to 2.2% compared to the non-NASH version when tested on the ImageNet data set. We also integrated this approach into the FINN hardware model synthesis tool to automate the application of our approach and the generation of the hardware model. Results show that using FINN can achieve a maximum throughput of 324.5 fps. In addition, NASH models can also result in a better trade-off between accuracy and hardware resource utilization. The accuracy-hardware (HW) Pareto curve shows that the models with the four NASH versions represent the best trade-offs achieving the highest accuracy for a given HW utilization. The code for our implementation is open-source and publicly available on GitHub at https://github.com/MFJI/NASH
    • …
    corecore