23 research outputs found

    The Role of the Proteinase Inhibitor Ovorubin in Apple Snail Eggs Resembles Plant Embryo Defense against Predation

    Get PDF
    BACKGROUND: Fieldwork has thoroughly established that most eggs are intensely predated. Among the few exceptions are the aerial egg clutches from the aquatic snail Pomacea canaliculata which have virtually no predators. Its defenses are advertised by the pigmented ovorubin perivitellin providing a conspicuous reddish coloration. The nature of the defense however, was not clear, except for a screening for defenses that identified a neurotoxic perivitellin with lethal effect on rodents. Ovorubin is a proteinase inhibitor (PI) whose role to protect against pathogens was taken for granted, according to the prevailing assumption. Through biochemical, biophysical and feeding experiments we studied the proteinase inhibitor function of ovorubin in egg defenses. METHODOLOGY/PRINCIPAL FINDINGS: Mass spectrometry sequencing indicated ovorubin belongs to the Kunitz-type serine proteinase inhibitor family. It specifically binds trypsin as determined by small angle X-ray scattering (SAXS) and cross-linking studies but, in contrast to the classical assumption, it does not prevent bacterial growth. Ovorubin was found extremely resistant to in vitro gastrointestinal proteolysis. Moreover feeding studies showed that ovorubin ingestion diminishes growth rate in rats indicating that this highly stable PI is capable of surviving passage through the gastrointestinal tract in a biologically active form. CONCLUSIONS: To our knowledge, this is the first direct evidence of the interaction of an egg PI with a digestive protease of potential predators, limiting predator's ability to digest egg nutrients. This role has not been reported in the animal kingdom but it is similar to plant defenses against herbivory. Further, this would be the only defense model with no trade-offs between conspicuousness and noxiousness by encoding into the same molecule both the aposematic warning signal and an antinutritive/antidigestive defense. These defenses, combined with a neurotoxin and probably unpalatable factors would explain the near absence of predators, opening new perspectives in the study of the evolution and ecology of egg defensive strategies

    Pomacea canaliculata (Mollusca, Gastropoda) in Patagonia: potential role of climatic change in its dispersion and settlement

    No full text
    Pomacea canaliculata (Lamarck, 1822) (Mollusca Gastropoda) shows a large native distribution range in South America, reaching as far south as 37º S (Buenos Aires, Argentina). This species was deliberately introduced into Southeast Asia around 1980 and subsequently underwent a rapid intentional or accidental dispersal into many countries in the region. It was also introduced into North and Central America and Hawaii. In this contribution we record the presence of P. canaliculata in Patagonia, assessing the possible influence of climatic change in the new establishment of this species there. Three samplings (between September 2004 and April 2005) were carried out at 38º 58' 20.2" S-68º 11' 27.3" W. In the sampling we found two adult specimens of P. canaliculata and numerous egg clutches. Pomacea canaliculata is naturally distributed in the Plata and Amazon Basins. The southern boundary of this species has been established as the isotherms of 14 ºC and 16 ºC in Buenos Aires province, and precipitations of 900 to 600 mm/year. This study also analysed variations in annual temperature and precipitation in Patagonia. Average temperatures show an increase over the years, although not constantly. Important modifications in precipitation regime in northern Patagonia, triggered by global climatic changes, could be beneficial for the settlement of populations of P. canaliculata in this new area, where precipitation increased enough to reach values similar to those in the southernmost area of distribution of this species
    corecore