101 research outputs found

    Pengaruh Perawatan Condenser Terhadap Tekanan Condenser Di STG Blok 2 PLTGU Tambak Lorok

    Get PDF
    Condenser is one of the important tools in PLTGU Pond Lorok. Condenser is a heat exchanger that serves to condense the steam turbine output becomes condensate water which would then be circulated back into water filler with sea water as coolant medium. The increase in condenser pressure showed a decrease in the performance of the condenser. Therefore it is necessary for cleaning the condenser. Cleaning the condenser in the online condition can be done in an effort to lower the condenser pressure. From the condenser cleaning results during March and April condenser pressure can be lowered by 1.1 mmHg Abs - 4.3 mmHg Abs. With the reduction in the condenser pressure of ± 4 mm Hg Abs then the power turbine will rise by 1 MW, it indicates that the unit more efficient

    Beclin-1 Expression is a Predictor of Clinical Outcome in Patients with Esophageal Squamous Cell Carcinoma and Correlated to Hypoxia-Inducible Factor (HIF)-1α Expression

    Get PDF
    In the present study, we examined the relationship between Beclin-1 expression and HIF-1α expression in esophageal squamous cell carcinoma(ESCC). There was a loss of Beclin-1 protein expression in 33% of ESCCs. Beclin-1 expression significantly correlated with depth of invasion, lymph node metastasis and clinical stage. Among the 54 patients, The survival rate of the Beclin-1-positive group was better than that of the Beclin-1-negative group. Twenty-five of the 54 (46%) tumor specimens showed high levels of HIF-1α immunoreactivity. Beclin-1 expression was associated with HIF-1α expression. The survival rate of patients with Beclin-1-positive and HIF-1α-low tumors was significantly higher than that of the other groups. These results suggest that Beclin-1 and HIF-1α expression are important determinants of survival in ESCCs

    Genetic and epigenetic silencing of the beclin 1 gene in sporadic breast tumors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Beclin 1, an important autophagy-related protein in human cells, is involved in cell death and cell survival. <it>Beclin 1 </it>mapped to human chromosome 17q21. It is widely expressed in normal mammary epithelial cells. Although down-regulated expression with mono-allelic deletions of <it>beclin 1 </it>gene was frequently observed in breast tumors, whether there was other regulatory mechanism of <it>beclin 1 </it>was to be investigated. We studied the expression of beclin 1 and explored the possible regulatory mechanisms on its expression in breast tumors.</p> <p>Methods</p> <p>20 pairs of tumors and adjacent normal tissues from patients with sporadic breast invasive ductal cancer (IDCs) were collected. The mRNA expression of <it>beclin 1 </it>was detected by real-time quantitative RT-PCR. Loss of heterozygosity (LOH) was determined by real-time quantitative PCR and microsatellite methods. The protein expression of beclin 1, p53, BRCA1 and BRCA2 was assessed by immunohistochemistry. CpG islands in 5' genomic region of beclin 1 gene were identified using MethylPrimer Program. Sodium bisulfite sequencing was used in examining the methylation status of each CpG island.</p> <p>Results</p> <p>Decreased <it>beclin 1 </it>mRNA expression was detected in 70% of the breast tumors, and the protein levels were co-related to the mRNA levels. Expression of <it>beclin 1 </it>mRNA was demonstrated to be much higher in the BRCA1 positive tumors than that in the BRCA1 negative ones. Loss of heterozygosity was detected in more than 45% of the breast tumors, and a dense cluster of CpG islands was found from the 5' end to the intron 2 of the <it>beclin 1 </it>gene. Methylation analysis showed that the promoter and the intron 2 of beclin 1 were aberrantly methylated in the tumors with decreased expression.</p> <p>Conclusions</p> <p>These data indicated that LOH and aberrant DNA methylation might be the possible reasons of the decreased expression of <it>beclin 1 </it>in the breast tumors. The findings here shed some new light on the regulatory mechanisms of beclin 1 in breast cancer.</p

    Calculation of the relative metastabilities of proteins in subcellular compartments of Saccharomyces cerevisiae

    Get PDF
    [abridged] Background: The distribution of chemical species in an open system at metastable equilibrium can be expressed as a function of environmental variables which can include temperature, oxidation-reduction potential and others. Calculations of metastable equilibrium for various model systems were used to characterize chemical transformations among proteins and groups of proteins found in different compartments of yeast cells. Results: With increasing oxygen fugacity, the relative metastability fields of model proteins for major subcellular compartments go as mitochondrion, endoplasmic reticulum, cytoplasm, nucleus. In a metastable equilibrium setting at relatively high oxygen fugacity, proteins making up actin are predominant, but those constituting the microtubule occur with a low chemical activity. A reaction sequence involving the microtubule and spindle pole proteins was predicted by combining the known intercompartmental interactions with a hypothetical program of oxygen fugacity changes in the local environment. In further calculations, the most-abundant proteins within compartments generally occur in relative abundances that only weakly correspond to a metastable equilibrium distribution. However, physiological populations of proteins that form complexes often show an overall positive or negative correlation with the relative abundances of proteins in metastable assemblages. Conclusions: This study explored the outlines of a thermodynamic description of chemical transformations among interacting proteins in yeast cells. The results suggest that these methods can be used to measure the degree of departure of a natural biochemical process or population from a local minimum in Gibbs energy.Comment: 32 pages, 7 figures; supporting information is available at http://www.chnosz.net/yeas

    Seasonal variations in the nitrogen isotopic composition of settling particles at station K2 in the western subarctic North Pacific

    Get PDF
    Intensive observations using hydrographical cruises and moored sediment trap deployments during 2010 and 2012 at station K2 in the North Pacific western subarctic gyre (WSG) revealed seasonal changes in δ15N of both suspended and settling particles. Suspended particles (SUS) were collected from depths between the surface and 200 m; settling particles by drifting traps (DST; 100-200 m) and moored traps (MST; 200 and 500 m). All particles showed higher δ15N values in winter and lower in summer, contrary to the expected by isotopic fractionation during phytoplankton nitrate consumption. We suggest that these observed isotopic patterns are due to ammonium consumption via light-controlled nitrification, which could induce variations in δ15N(SUS) of 0.4-3.1 ‰ in the euphotic zone (EZ). The δ15N(SUS) signature was reflected by δ15 N(DST) despite modifications during biogenic transformation from suspended particles in the EZ. δ15 N enrichment (average: 3.6 ‰) and the increase in C:N ratio (by 1.6) in settling particles suggests year-round contributions of metabolites from herbivorous zooplankton as well as TEPs produced by diatoms. Accordingly, seasonal δ15 N(DST) variations of 2.4-7.0 ‰ showed a significant correlation with primary productivity (PP) at K2. By applying the observed δ15 N(DST) vs. PP regression to δ15 N(MST) of 1.9-8.0 ‰, we constructed the first annual time-series of PP changes in the WSG. Moreover, the monthly export ratio at 500 m was calculated using both estimated PP and measured organic carbon fluxes. Results suggest a 1.6 to 1.8 times more efficient transport of photosynthetically-fixed carbon to the intermediate layers occurs in summer/autumn rather than winter/spring
    corecore