2,973 research outputs found

    The Royal Free Hospital score: a calibrated prognostic model for patients with cirrhosis admitted to intensive care unit. Comparison with current models and CLIF-SOFA score

    Get PDF
    Prognosis for patients with cirrhosis admitted to intensive care unit (ICU) is poor. ICU prognostic models are more accurate than liver-specific models. We identified predictors of mortality, developed a novel prognostic score (Royal Free Hospital (RFH) score), and tested it against established prognostic models and the yet unvalidated Chronic Liver Failure-Sequential Organ Failure Assessment (CLIF-SOFA) model

    An overview of the clinical applications of optical coherence tomography angiography

    Get PDF
    Optical coherence tomography angiography (OCTA) has emerged as a novel, non-invasive imaging modality that allows the detailed study of flow within the vascular structures of the eye. Compared to conventional dye angiography, OCTA can produce more detailed, higher resolution images of the vasculature without the added risk of dye injection. In our review, we discuss the advantages and disadvantages of this new technology in comparison to conventional dye angiography. We provide an overview of the current OCTA technology available, compare the various commercial OCTA machines technical specifications and discuss some future software improvements. An approach to the interpretation of OCTA images by correlating images to other multimodal imaging with attention to identifying potential artefacts will be outlined and may be useful to ophthalmologists, particularly those who are currently still unfamiliar with this new technology. This review is based on a search of peer-reviewed published papers relevant to OCTA according to our current knowledge, up to January 2017, available on the PubMed database. Currently, many of the published studies have focused on OCTA imaging of the retina, in particular, the use of OCTA in the diagnosis and management of common retinal diseases such as age-related macular degeneration and retinal vascular diseases. In addition, we describe clinical applications for OCTA imaging in inflammatory diseases, optic nerve diseases and anterior segment diseases. This review is based on both the current literature and the clinical experience of our individual authors, with an emphasis on the clinical applications of this imaging technology.Eye advance online publication, 8 September 2017; doi:10.1038/eye.2017.181

    Superconformal symmetry and maximal supergravity in various dimensions

    Full text link
    In this paper we explore the relation between conformal superalgebras with 64 supercharges and maximal supergravity theories in three, four and six dimensions using twistorial oscillator techniques. The massless fields of N=8 supergravity in four dimensions were shown to fit into a CPT-self-conjugate doubleton supermultiplet of the conformal superalgebra SU(2,2|8) a long time ago. We show that the fields of maximal supergravity in three dimensions can similarly be fitted into the super singleton multiplet of the conformal superalgebra OSp(16|4,R), which is related to the doubleton supermultiplet of SU(2,2|8) by dimensional reduction. Moreover, we construct the ultra-short supermultiplet of the six-dimensional conformal superalgebra OSp(8*|8) and show that its component fields can be organized in an on-shell superfield. The ultra-short OSp(8*|8) multiplet reduces to the doubleton supermultiplet of SU(2,2|8) upon dimensional reduction. We discuss the possibility of a chiral maximal (4,0) six-dimensional supergravity theory with USp(8) R-symmetry that reduces to maximal supergravity in four dimensions and is different from six-dimensional (2,2) maximal supergravity, whose fields cannot be fitted into a unitary supermultiplet of a simple conformal superalgebra. Such an interacting theory would be the gravitational analog of the (2,0) theory.Comment: 54 pages, PDFLaTeX, Section 5 and several references added. Version accepted for publication in JHE

    Integrative analyses identify modulators of response to neoadjuvant aromatase inhibitors in patients with early breast cancer

    Get PDF
    Introduction Aromatase inhibitors (AIs) are a vital component of estrogen receptor positive (ER+) breast cancer treatment. De novo and acquired resistance, however, is common. The aims of this study were to relate patterns of copy number aberrations to molecular and proliferative response to AIs, to study differences in the patterns of copy number aberrations between breast cancer samples pre- and post-AI neoadjuvant therapy, and to identify putative biomarkers for resistance to neoadjuvant AI therapy using an integrative analysis approach. Methods Samples from 84 patients derived from two neoadjuvant AI therapy trials were subjected to copy number profiling by microarray-based comparative genomic hybridisation (aCGH, n = 84), gene expression profiling (n = 47), matched pre- and post-AI aCGH (n = 19 pairs) and Ki67-based AI-response analysis (n = 39). Results Integrative analysis of these datasets identified a set of nine genes that, when amplified, were associated with a poor response to AIs, and were significantly overexpressed when amplified, including CHKA, LRP5 and SAPS3. Functional validation in vitro, using cell lines with and without amplification of these genes (SUM44, MDA-MB134-VI, T47D and MCF7) and a model of acquired AI-resistance (MCF7-LTED) identified CHKA as a gene that when amplified modulates estrogen receptor (ER)-driven proliferation, ER/estrogen response element (ERE) transactivation, expression of ER-regulated genes and phosphorylation of V-AKT murine thymoma viral oncogene homolog 1 (AKT1). Conclusions These data provide a rationale for investigation of the role of CHKA in further models of de novo and acquired resistance to AIs, and provide proof of concept that integrative genomic analyses can identify biologically relevant modulators of AI response

    Maintaining over time Clinical Performance targets on Anaemia correction in unselected population on chronic dialysis at 20 Italian Centres. Data from a retrospective study for a Clinical Audit

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Italian and European Best Practice Guidelines (EBPG) recommend a target haemoglobin value greater than 11 g/dl in most patients with Chronic Kidney Diseases. However, it is still difficult to maintain these values at a steady rate. Thus, the main aim of the study was to evaluate, throughout 2005, how many patients steadily maintained the performance targets related to anaemia treatment.</p> <p>Methods</p> <p>The survey was conducted on 3283 patients on haemodialysis (HD) and peritoneal dialysis (PD) at 20 Italian dialysis centres. 540 patients were randomly selected; each centre provided a statistically significant sample proportional to its total number of patients. Maintenance of the following target levels was assessed over time: Haemoglobin (HB) 11-12 gr/dl; Iron: 60-160 mcg/dl; Ferritin: 30-400 mcg/l; Transferrin: 200-360 mg/dl; Transferrin saturation percentage (TSAT %):> 25 <50; Dialysis doses (KT/V): >1.2 <2.0 for non-diabetic HD patients; >1.5 <2.2 for diabetic HD patients; DP: >1.8 <2.5.</p> <p>Outcome included:</p> <p indent="1">1- Percentage of target maintenance for each parameter.</p> <p indent="1">2- Erythropoietin dose in relation to dialysis techniques, presence of cancer or myeloma, diabetic status, Vitamin B therapy.</p> <p indent="1">3- Erythropoietin dose (International Units/kg/week) (IU/kg/wk) depending on: haemoglobin values, hospitalization of more than 3 days.</p> <p>Results</p> <p>Mean age was 65.1; mean haemoglobin concentration over the whole population was 11.3 gr/dl (Standard Deviation (SD): 0.91). The clinical performance targets were maintained over time as follows: HB: 4.3% (Mean 11.43 gr/dl) (SD: 0.42); Ferritin: 71.1% (Mean: 250.23 mcg/L (SD:104.07); Iron: 95.0% (Mean 59.79 mcg/dl)(SD:16.76); Transferrin: 44.8% (Mean 216.83 mg/dl) (SD: 19,50); TSAT %: in 8.4% (Mean: 34.33% (SD: 6.56); HD KT/V: 61.0% (Mean:1.46) (SD: 0.7); PD KT/V:31.4% (Mean: 2.10) (SD: 0.02). The average weekly dose of Erythropoietin (IU/Kg/Wk) was significantly lower for the peritoneal dialysis technique; the higher haemoglobin values, the lower the Erythropoietin dose (IU/Kg/Wk).</p> <p>Conclusion</p> <p>A very low percentage of patients maintained haemoglobin target values over time. We need to identify precise criteria to evaluate the stability over time of clinical performance targets proposed by the guidelines.</p

    Ucma/GRP inhibits phosphate-induced vascular smooth muscle cell calcification via SMAD-dependent BMP signalling

    Get PDF
    Vascular calcification (VC) is the process of deposition of calcium phosphate crystals in the blood vessel wall, with a central role for vascular smooth muscle cells (VSMCs). VC is highly prevalent in chronic kidney disease (CKD) patients and thought, in part, to be induced by phosphate imbalance. The molecular mechanisms that regulate VC are not fully known. Here we propose a novel role for the mineralisation regulator Ucma/GRP (Upper zone of growth plate and Cartilage Matrix Associated protein/Gla Rich Protein) in phosphate-induced VSMC calcification. We show that Ucma/GRP is present in calcified atherosclerotic plaques and highly expressed in calcifying VSMCs in vitro. VSMCs from Ucma/GRP(-/-) mice showed increased mineralisation and expression of osteo/chondrogenic markers (BMP-2, Runx2, beta-catenin, p-SMAD1/5/8, ALP, OCN), and decreased expression of mineralisation inhibitor MGP, suggesting that Ucma/GRP is an inhibitor of mineralisation. Using BMP signalling inhibitor noggin and SMAD1/5/8 signalling inhibitor dorsomorphin we showed that Ucma/GRP is involved in inhibiting the BMP-2-SMAD1/5/8 osteo/chondrogenic signalling pathway in VSMCs treated with elevated phosphate concentrations. Additionally, we showed for the first time evidence of a direct interaction between Ucma/GRP and BMP-2. These results demonstrate an important role of Ucma/GRP in regulating osteo/chondrogenic differentiation and phosphate-induced mineralisation of VSMCs.NWO ZonMw [MKMD 40-42600-98-13007]; FCT [SFRH/BPD/70277/2010]info:eu-repo/semantics/publishedVersio

    Reversible Keap1 inhibitors are preferential pharmacological tools to modulate cellular mitophagy

    Get PDF
    Mitophagy orchestrates the autophagic degradation of dysfunctional mitochondria preventing their pathological accumulation and contributing to cellular homeostasis. We previously identified a novel chemical tool (hereafter referred to as PMI), which drives mitochondria into autophagy without collapsing their membrane potential (ΔΨm). PMI is an inhibitor of the protein-protein interaction (PPI) between the transcription factor Nrf2 and its negative regulator, Keap1 and is able to up-regulate the expression of autophagy-associated proteins, including p62/SQSTM1. Here we show that PMI promotes mitochondrial respiration, leading to a superoxide-dependent activation of mitophagy. Structurally distinct Keap1-Nrf2 PPI inhibitors promote mitochondrial turnover, while covalent Keap1 modifiers, including sulforaphane (SFN) and dimethyl fumarate (DMF), are unable to induce a similar response. Additionally, we demonstrate that SFN reverses the effects of PMI in co-treated cells by reducing the accumulation of p62 in mitochondria and subsequently limiting their autophagic degradation. This study highlights the unique features of Keap1-Nrf2 PPI inhibitors as inducers of mitophagy and their potential as pharmacological agents for the treatment of pathological conditions characterized by impaired mitochondrial quality control

    TLR Tolerance Reduces IFN-Alpha Production Despite Plasmacytoid Dendritic Cell Expansion and Anti-Nuclear Antibodies in NZB Bicongenic Mice

    Get PDF
    Genetic loci on New Zealand Black (NZB) chromosomes 1 and 13 play a significant role in the development of lupus-like autoimmune disease. We have previously shown that C57BL/6 (B6) congenic mice with homozygous NZB chromosome 1 (B6.NZBc1) or 13 (B6.NZBc13) intervals develop anti-nuclear antibodies and mild glomerulonephritis (GN), together with increased T and B cell activation. Here, we produced B6.NZBc1c13 bicongenic mice with both intervals, and demonstrate several novel phenotypes including: marked plasmacytoid and myeloid dendritic cell expansion, and elevated IgA production. Despite these changes, only minor increases in anti-nuclear antibody production were seen, and the severity of GN was reduced as compared to B6.NZBc1 mice. Although bicongenic mice had increased levels of baff and tnf-Ξ± mRNA in their spleens, the levels of IFN-Ξ±-induced gene expression were reduced. Splenocytes from bicongenic mice also demonstrated reduced secretion of IFN-Ξ± following TLR stimulation in vitro. This reduction was not due to inhibition by TNF-Ξ± and IL-10, or regulation by other cellular populations. Because pDC in bicongenic mice are chronically exposed to nuclear antigen-containing immune complexes in vivo, we examined whether repeated stimulation of mouse pDC with TLR ligands leads to impaired IFN-Ξ± production, a phenomenon termed TLR tolerance. Bone marrow pDC from both B6 and bicongenic mice demonstrated markedly inhibited secretion of IFN-Ξ± following repeated stimulation with a TLR9 ligand. Our findings suggest that the expansion of pDC and production of anti-nuclear antibodies need not be associated with increased IFN-Ξ± production and severe kidney disease, revealing additional complexity in the regulation of autoimmunity in systemic lupus erythematosus

    New Physics in Bs -> J/psi phi: a General Analysis

    Full text link
    Recently, the CDF and D0 collaborations measured indirect CP violation in Bs -> J/psi phi and found a hint of a signal. If taken at face value, this can be interpreted as a nonzero phase of Bs-Bsbar mixing (beta_s), in disagreement with the standard model, which predicts that beta_s ~= 0. In this paper, we argue that this analysis may be incomplete. In particular, there can be new physics (NP) in the bbar -> sbar c cbar decay. If so, the value of beta_s is different than for the case in which NP is assumed to be present only in the mixing. We have examined several models of NP and found that, indeed, there can be significant contributions to the decay. These effects are consistent with measurements in B -> J/psi K* and Bd -> J/psi Ks. Due to the NP in the decay, polarization-dependent indirect CP asymmetries and triple-product asymmetries are predicted in Bs -> J/psi phi.Comment: 28 pages, JHEP, no figures. Considerable changes made. Abstract and main text of paper modified to alter presentation. Appendix added. References added. Conclusions unchanged

    Insights from Amphioxus into the Evolution of Vertebrate Cartilage

    Get PDF
    Central to the story of vertebrate evolution is the origin of the vertebrate head, a problem difficult to approach using paleontology and comparative morphology due to a lack of unambiguous intermediate forms. Embryologically, much of the vertebrate head is derived from two ectodermal tissues, the neural crest and cranial placodes. Recent work in protochordates suggests the first chordates possessed migratory neural tube cells with some features of neural crest cells. However, it is unclear how and when these cells acquired the ability to form cellular cartilage, a cell type unique to vertebrates. It has been variously proposed that the neural crest acquired chondrogenic ability by recruiting proto-chondrogenic gene programs deployed in the neural tube, pharynx, and notochord. To test these hypotheses we examined the expression of 11 amphioxus orthologs of genes involved in neural crest chondrogenesis. Consistent with cellular cartilage as a vertebrate novelty, we find that no single amphioxus tissue co-expresses all or most of these genes. However, most are variously co-expressed in mesodermal derivatives. Our results suggest that neural crest-derived cartilage evolved by serial cooption of genes which functioned primitively in mesoderm
    • …
    corecore