318 research outputs found

    Opening the archives for state of the art tumour genetic research: sample processing for array-CGH using decalcified, formalin-fixed, paraffin-embedded tissue-derived DNA samples

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Molecular genetic studies on rare tumour entities, such as bone tumours, often require the use of decalcified, formalin-fixed, paraffin-embedded tissue (dFFPE) samples. Regardless of which decalcification procedure is used, this introduces a vast breakdown of DNA that precludes the possibility of further molecular genetic testing. We set out to establish a robust protocol that would overcome these intrinsic hurdles for bone tumour research.</p> <p>Findings</p> <p>The goal of our study was to establish a protocol, using a modified DNA isolation procedure and quality controls, to select decalcified samples suitable for array-CGH testing. Archival paraffin blocks were obtained from 9 different pathology departments throughout Europe, using different fixation, embedding and decalcification procedures, in order to preclude a bias for certain lab protocols. Isolated DNA samples were subjected to direct chemical labelling and enzymatic labelling systems and were hybridised on a high resolution oligonucleotide chip containing 44,000 reporter elements.</p> <p>Genomic alterations (gains and losses) were readily detected in most of the samples analysed. For example, both homozygous deletions of 0.6 Mb and high level of amplifications of 0.7 Mb were identified.</p> <p>Conclusions</p> <p>We established a robust protocol for molecular genetic testing of dFFPE derived DNA, irrespective of fixation, decalcification or sample type used. This approach may greatly facilitate further genetic testing on rare tumour entities where archival decalcified, formalin fixed samples are the only source.</p

    Progression and mortality in patients with CKD attending outpatient nephrology clinics across Europe: A novel analytic approach

    Get PDF
    The incidence of renal replacement therapy (RRT) varies across countries. Yet, little is known about the epidemiology of chronic kidney disease (CKD) outcomes. Our aim was to describe progression and mortality risk in CKD patients not on RRT attending outpatient nephrology clinics across Europe. We used individual data from nine CKD cohorts participating in the European CKD Burden Consortium. A joint model was used to estimate mean eGFR change and mortality risk simultaneously, thereby accounting for mortality risk when estimating eGFR decline and vice versa, while also correcting for the measurement error in eGFR. Results were adjusted for important risk factors (baseline eGFR, age, sex, albuminuria, primary renal disease, diabetes, hypertension, obesity and smoking). 27,771 patients from five countries were included. The adjusted mean annual eGFR decline varied from 0.77 (95%CI 0.45,1.08) ml/min/1.73m2 in the Belgium cohort to 2.43 (95%CI 2.11,2.75) ml/min/1.73m2 in the Spanish cohort. As compared to the Italian PIRP cohort, the adjusted mortality hazard ratio varied from 0.22 (95%CI 0.11,0.43) in the London LACKABO cohort to 1.30 (95%CI 1.13,1.49) in the English CRISIS cohort. Outcomes in CKD patients attending outpatient nephrology clinics varied markedly across European regions. Although eGFR decline showed minor variation, the most variation was observed in CKD mortality. Our results suggest that different healthcare organization systems are potentially associated with differences in outcome of CKD patients within Europe. These results can be used by policy makers to plan resources on a regional, national and European level

    Planning a cluster randomized trial with unequal cluster sizes: practical issues involving continuous outcomes

    Get PDF
    BACKGROUND: Cluster randomization design is increasingly used for the evaluation of health-care, screeening or educational interventions. At the planning stage, sample size calculations usually consider an average cluster size without taking into account any potential imbalance in cluster size. However, there may exist high discrepancies in cluster sizes. METHODS: We performed simulations to study the impact of an imbalance in cluster size on power. We determined by simulations to which extent four methods proposed to adapt the sample size calculations to a pre-specified imbalance in cluster size could lead to adequately powered trials. RESULTS: We showed that an imbalance in cluster size can be of high influence on the power in the case of severe imbalance, particularly if the number of clusters is low and/or the intraclass correlation coefficient is high. In the case of a severe imbalance, our simulations confirmed that the minimum variance weights correction of the variation inflaction factor (VIF) used in the sample size calculations has the best properties. CONCLUSION: Publication of cluster sizes is important to assess the real power of the trial which was conducted and to help designing future trials. We derived an adaptation of the VIF from the minimum variance weights correction to be used in case the imbalance can be a priori formulated such as "a proportion (γ) of clusters actually recruit a proportion (τ) of subjects to be included (γ ≤ τ)"

    Study of the B +→ J / ψ Λ ¯ p decay in proton-proton collisions at √s = 8 TeV

    Get PDF
    A study of the B +→ J / ψ Λ ¯ p decay using proton-proton collision data collected at s = 8 TeV by the CMS experiment at the LHC, corresponding to an integrated luminosity of 19.6 fb−1, is presented. The ratio of branching fractions B(B+→J/ψΛ¯p)/B(B+→J/ψK∗(892)+) is measured to be (1.054 ± 0.057(stat) ± 0.035(syst) ± 0.011(B))%, where the last uncertainty reflects the uncertainties in the world-average branching fractions of Λ ¯ and K*(892) + decays to reconstructed final states. The invariant mass distributions of the J / ψ Λ ¯ , J/ψp, and Λ ¯ p systems produced in the B +→ J / ψ Λ¯ p decay are investigated and found to be inconsistent with the pure phase space hypothesis. The analysis is extended by using a model-independent angular amplitude analysis, which shows that the observed invariant mass distributions are consistent with the contributions from excited kaons decaying to the Λ ¯ p system. [Figure not available: see fulltext.
    corecore