1,604 research outputs found

    Reasoning about embedded dependencies using inclusion dependencies

    Full text link
    The implication problem for the class of embedded dependencies is undecidable. However, this does not imply lackness of a proof procedure as exemplified by the chase algorithm. In this paper we present a complete axiomatization of embedded dependencies that is based on the chase and uses inclusion dependencies and implicit existential quantification in the intermediate steps of deductions

    Proteomics: in pursuit of effective traumatic brain injury therapeutics

    Get PDF
    Effective traumatic brain injury (TBI) therapeutics remain stubbornly elusive. Efforts in the field have been challenged by the heterogeneity of clinical TBI, with greater complexity among underlying molecular phenotypes than initially conceived. Future research must confront the multitude of factors comprising this heterogeneity, representing a big data challenge befitting the coming informatics age. Proteomics is poised to serve a central role in prescriptive therapeutic development, as it offers an efficient endpoint within which to assess post-TBI biochemistry. We examine rationale for multifactor TBI proteomic studies and the particular importance of temporal profiling in defining biochemical sequences and guiding therapeutic development. Lastly, we offer perspective on repurposing biofluid proteomics to develop theragnostic assays with which to prescribe, monitor and assess pharmaceutics for improved translation and outcome for TBI patients

    Phosphoenolpyruvate carboxylase dentified as a key enzyme in erythrocytic Plasmodium falciparum carbon metabolism

    Get PDF
    Phospoenolpyruvate carboxylase (PEPC) is absent from humans but encoded in thePlasmodium falciparum genome, suggesting that PEPC has a parasite-specific function. To investigate its importance in P. falciparum, we generated a pepc null mutant (D10Δpepc), which was only achievable when malate, a reduction product of oxaloacetate, was added to the growth medium. D10Δpepc had a severe growth defect in vitro, which was partially reversed by addition of malate or fumarate, suggesting that pepc may be essential in vivo. Targeted metabolomics using 13C-U-D-glucose and 13C-bicarbonate showed that the conversion of glycolytically-derived PEP into malate, fumarate, aspartate and citrate was abolished in D10Δpepc and that pentose phosphate pathway metabolites and glycerol 3-phosphate were present at increased levels. In contrast, metabolism of the carbon skeleton of 13C,15N-U-glutamine was similar in both parasite lines, although the flux was lower in D10Δpepc; it also confirmed the operation of a complete forward TCA cycle in the wild type parasite. Overall, these data confirm the CO2 fixing activity of PEPC and suggest that it provides metabolites essential for TCA cycle anaplerosis and the maintenance of cytosolic and mitochondrial redox balance. Moreover, these findings imply that PEPC may be an exploitable target for future drug discovery

    An Approach for Reliably Investigating Hippocampal Sharp Wave-Ripples In Vitro

    Get PDF
    Among the various hippocampal network patterns, sharp wave-ripples (SPW-R) are currently the mechanistically least understood. Although accurate information on synaptic interactions between the participating neurons is essential for comprehensive understanding of the network function during complex activities like SPW-R, such knowledge is currently notably scarce. counterpart. We show that slice storage in the interface chamber close to physiological temperature is the required condition to preserve network integrity that is necessary for the generation of SPW-R. Moreover, we demonstrate the utility of our method for studying synaptic and network properties of SPW-R, using electrophysiological and imaging methods that can only be applied in the submerged system.The approach presented here demonstrates a reliable and experimentally simple strategy for studying hippocampal sharp wave-ripples. Given its utility and easy application we expect our model to foster the generation of new insight into the network physiology underlying SPW-R

    Graphene plasmonics

    Full text link
    Two rich and vibrant fields of investigation, graphene physics and plasmonics, strongly overlap. Not only does graphene possess intrinsic plasmons that are tunable and adjustable, but a combination of graphene with noble-metal nanostructures promises a variety of exciting applications for conventional plasmonics. The versatility of graphene means that graphene-based plasmonics may enable the manufacture of novel optical devices working in different frequency ranges, from terahertz to the visible, with extremely high speed, low driving voltage, low power consumption and compact sizes. Here we review the field emerging at the intersection of graphene physics and plasmonics.Comment: Review article; 12 pages, 6 figures, 99 references (final version available only at publisher's web site

    A primary care, multi-disciplinary disease management program for opioid-treated patients with chronic non-cancer pain and a high burden of psychiatric comorbidity

    Get PDF
    BACKGROUND: Chronic non-cancer pain is a common problem that is often accompanied by psychiatric comorbidity and disability. The effectiveness of a multi-disciplinary pain management program was tested in a 3 month before and after trial. METHODS: Providers in an academic general medicine clinic referred patients with chronic non-cancer pain for participation in a program that combined the skills of internists, clinical pharmacists, and a psychiatrist. Patients were either receiving opioids or being considered for opioid therapy. The intervention consisted of structured clinical assessments, monthly follow-up, pain contracts, medication titration, and psychiatric consultation. Pain, mood, and function were assessed at baseline and 3 months using the Brief Pain Inventory (BPI), the Center for Epidemiological Studies-Depression Scale scale (CESD) and the Pain Disability Index (PDI). Patients were monitored for substance misuse. RESULTS: Eighty-five patients were enrolled. Mean age was 51 years, 60% were male, 78% were Caucasian, and 93% were receiving opioids. Baseline average pain was 6.5 on an 11 point scale. The average CESD score was 24.0, and the mean PDI score was 47.0. Sixty-three patients (73%) completed 3 month follow-up. Fifteen withdrew from the program after identification of substance misuse. Among those completing 3 month follow-up, the average pain score improved to 5.5 (p = 0.003). The mean PDI score improved to 39.3 (p < 0.001). Mean CESD score was reduced to 18.0 (p < 0.001), and the proportion of depressed patients fell from 79% to 54% (p = 0.003). Substance misuse was identified in 27 patients (32%). CONCLUSIONS: A primary care disease management program improved pain, depression, and disability scores over three months in a cohort of opioid-treated patients with chronic non-cancer pain. Substance misuse and depression were common, and many patients who had substance misuse identified left the program when they were no longer prescribed opioids. Effective care of patients with chronic pain should include rigorous assessment and treatment of these comorbid disorders and intensive efforts to insure follow up

    Impaired Ca2+-handling in HIF-1α+/− mice as a consequence of pressure overload

    Get PDF
    The hypoxia-inducible factor (HIF)-1 is critically involved in the cellular adaptation to a decrease in oxygen availability. The influence of HIF-1α for the development of cardiac hypertrophy and cardiac function that occurs in response to sustained pressure overload has been mainly attributed to a challenged cardiac angiogenesis and cardiac hypertrophy up to now. Hif-1α+/+ and Hif-1α+/− mice were studied regarding left ventricular hypertrophy and cardiac function after being subjected to transverse aortic constriction (TAC). After TAC, both Hif-1α+/+ and Hif-1α+/− mice developed left ventricular hypertrophy with increased posterior wall thickness, septum thickness and increased left ventricular weight to a similar extent. No significant difference in cardiac vessel density was observed between Hif-1α+/+ and Hif-1α+/− mice. However, only the Hif-1α+/− mice developed severe heart failure as revealed by a significantly reduced fractional shortening mostly due to increased end-systolic left ventricular diameter. On the single cell level this correlated with reduced myocyte shortenings, decreased intracellular Ca2+-transients and SR-Ca2+ content in myocytes of Hif-1a+/− mice. Thus, HIF-1α can be critically involved in the preservation of cardiac function after chronic pressure overload without affecting cardiac hypertrophy. This effect is mediated via HIF-dependent modulation of cardiac calcium handling and contractility

    The malarial exported PFA0660w is an Hsp40 co-chaperone of PfHsp70-x

    Get PDF
    Plasmodium falciparum, the human pathogen responsible for the most dangerous malaria infection, survives and develops in mature erythrocytes through the export of proteins needed for remodelling of the host cell. Molecular chaperones of the heat shock protein (Hsp) family are prominent members of the exportome, including a number of Hsp40s and a Hsp70. PFA0660w, a type II Hsp40, has been shown to be exported and possibly form a complex with PfHsp70-x in the infected erythrocyte cytosol. However, the chaperone properties of PFA0660w and its interaction with human and parasite Hsp70s are yet to be investigated. Recombinant PFA0660w was found to exist as a monomer in solution, and was able to significantly stimulate the ATPase activity of PfHsp70-x but not that of a second plasmodial Hsp70 (PfHsp70-1) or a human Hsp70 (HSPA1A), indicating a potential specific functional partnership with PfHsp70-x. Protein binding studies in the presence and absence of ATP suggested that the interaction of PFA0660w with PfHsp70-x most likely represented a co-chaperone/chaperone interaction. Also, PFA0660w alone produced a concentrationdependent suppression of rhodanese aggregation, demonstrating its chaperone properties. Overall, we have provided the first biochemical evidence for the possible role of PFA0660w as a chaperone and as co-chaperone of PfHsp70-x. We propose that these chaperones boost the chaperone power of the infected erythrocyte, enabling successful protein trafficking and folding, and thereby making a fundamental contribution to the pathology of malaria
    • …
    corecore