16 research outputs found

    Quantum-limited amplification and parametric instability in the reversed dissipation regime of cavity optomechanics.

    Get PDF
    Cavity optomechanical phenomena, such as cooling, amplification, or optomechanically induced transparency, emerge due to a strong imbalance in the dissipation rates of the parametrically coupled electromagnetic and mechanical resonators. Here we analyze the reversed dissipation regime where the mechanical energy relaxation rate exceeds the energy decay rate of the electromagnetic cavity. We demonstrate that this regime allows for mechanically induced amplification (or cooling) of the electromagnetic mode. Gain, bandwidth, and added noise of this electromagnetic amplifier are derived and compared to amplification in the normal dissipation regime. In addition, we analyze the parametric instability, i.e., optomechanical Brillouin lasing, and contrast it to conventional optomechanical phonon lasing. Finally, we propose an experimental scheme that realizes the reversed dissipation regime using parametric coupling and optomechanical cooling with a second electromagnetic mode enabling quantum-limited amplification. Recent advances in high-Q superconducting microwave resonators make the reversed dissipation regime experimentally realizable

    Nonreciprocal reconfigurable microwave optomechanical circuit.

    Get PDF
    Nonreciprocal microwave devices are ubiquitous in radar and radio communication and indispensable in the readout chains of superconducting quantum circuits. Since they commonly rely on ferrite materials requiring large magnetic fields that make them bulky and lossy, there has been significant interest in magnetic-field-free on-chip alternatives, such as those recently implemented using the Josephson nonlinearity. Here, we realize reconfigurable nonreciprocal transmission between two microwave modes using purely optomechanical interactions in a superconducting electromechanical circuit. The scheme relies on the interference in two mechanical modes that mediate coupling between the microwave cavities and requires no magnetic field. We analyse the isolation, transmission and the noise properties of this nonreciprocal circuit. Finally, we show how quantum-limited circulators can be realized with the same principle. All-optomechanically mediated nonreciprocity demonstrated here can also be extended to directional amplifiers, and it forms the basis towards realizing topological states of light and sound.Nonreciprocal optical devices traditionally rely on magnetic fields and magnetic-free approaches are rather recent. Here, Bernier et al. propose and demonstrate a purely optomechanical circulator with reconfigurable transmission without the need for direct coupling between input and output modes.This work was supported by the SNF, the NCCR Quantum Science and Technology (QSIT), and the EU Horizon 2020 research and innovation programme under grant agreement No. 732894 (FET Proactive HOT). DM acknowledges support by the UK Engineering and Physical Sciences Research Council (EPSRC) under Grant No. EP/M506485/1. T.J.K. acknowledges financial support from an ERC AdG (QuREM). A.N. holds a University Research Fellowship from the Royal Society and acknowledges support from the Winton Programme for the Physics of Sustainability. A.K. holds INSPIRE scholarship from the Department of Science and Technology, India. All samples were fabricated in the Center of MicroNanoTechnology (CMi) at EPFL

    Compact Josephson φ-junctions

    No full text
    This chapter is devoted to the study of controllable proximity effects in superconductors (S), in terms of both fundamental aspects and applications. As a part of the work, theoretical description was suggested for a number of structures with superconducting electrodes and multiple interlayers with new physics related to the proximity effect and nanoscale φ-junctions. They are Josephson structures with the phase of the ground state φg, 0 < φg < π φ-junctions can be created on the basis of longitudinally oriented normal metal (N) and ferromagnetics (F) layers between superconducting electrodes. Under certain conditions, the amplitude of the first harmonic in the current-phase relation (CPR) is relatively small due to F layer. The coupling across N layer provides negative sign of the second harmonic. To derive quantitative criteria for realization of a φ-junction, we have solved two-dimensional boundary-value problem in the frame of Usadel equations for overlap and ramp geometries of different structures with NF bilayer. This chapter is focused on different geometries of nanoscale φ-structures of the size much less than Josephson penetration depth λJ. At the same time, φ-state cannot be realized in conventional SNS and SFS sandwiches. Proximity effect between N and F layers limits minimal possible size of φ-junction. In the case of smaller junctions, NF bilayer becomes almost homogeneous, φ-state is prohibited, and junction exists in 0- or π-state. The conditions for realization of φ-junctions in ramp-type S–NF–S, overlap-type SFN–FN–NFS, and RTO-type SN–FN–NS geometries are discussed in the chapter. It is shown that RTO-type SN–FN–NS geometry is most suitable for practical realization. It is also shown in this chapter that the parameter range of φ-state existence can be sufficiently broadened. It allows to realize Josephson φ-junctions using up-to-date technology. By varying the temperature, we can slightly shift the region of 0-π transition and, consequently, we can control the mentioned phase of the ground state. Furthermore, sensitivity of the ground state to an electron distribution function permits applications of φ-junctions as small-scale self-biasing single-photon detectors. Moreover, these junctions are controllable and have degenerate ground states +φ and −φ, providing necessary condition for the so-called silent quantum bits
    corecore