
Nonreciprocal reconfigurable microwave optomechanical circuit
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Nonreciprocal microwave devices are ubiquitous in radar and radio communication and indispens-
able in the readout chains of superconducting quantum circuits. Since they commonly rely on ferrite
materials requiring large magnetic fields that make them bulky and lossy, there has been signifi-
cant interest in magnetic-field-free on-chip alternatives, such as those recently implemented using
the Josephson nonlinearity. Here, we realise reconfigurable nonreciprocal transmission between two
microwave modes using purely optomechanical interactions in a superconducting electromechani-
cal circuit. The scheme relies on the interference in two mechanical modes that mediate coupling
between the microwave cavities and requires no magnetic field. We analyse the isolation, transmis-
sion and the noise properties of this nonreciprocal circuit. Finally, we show how quantum-limited
circulators can be realised with the same principle. All-optomechanically-mediated nonreciprocity
demonstrated here can also be extended to directional amplifiers, and it forms the basis towards
realising topological states of light and sound.

Nonreciprocal devices, such as isolators, circulators,
and directional amplifiers, exhibit altered transmission
characteristics if the input and output channels are in-
terchanged. They are essential to several applications
in signal processing and communication, as they protect
devices from interfering signals [1]. At the heart of any
such device lies an element breaking Lorentz reciprocal
symmetry for electromagnetic sources [2, 3]. Such el-
ements have included ferrite materials [4–6], magneto-
optical materials [7–10], optical nonlinearities [11–13],
temporal modulation [14–19], chiral atomic states [20],
and physical rotation [21]. Typically, a commercial non-
reciprocal microwave apparatus exploits ferrite materi-
als and magnetic fields, which leads to a propagation-
direction-dependent phase shift for di↵erent field polar-
izations. A significant drawback of such devices is that
they are ill-suited for sensitive superconducting circuits,
since their strong magnetic fields are disruptive and re-
quire heavy shielding. In recent years, the major ad-
vances in quantum superconducting circuits [22], that
require isolation from noise emanating from readout elec-
tronics, have led to a significant interest in nonreciprocal
devices operating at the microwave frequencies that dis-
pense with magnetic fields and can be integrated on-chip.

As an alternative to ferrite-based nonreciprocal tech-
nologies, several approaches have been pursued towards
nonreciprocal microwave chip-scale devices. Firstly, the
modulation in time of the parametric couplings between
modes of a network can simulate rotation about an axis,
creating an artificial magnetic field [14, 18, 23, 24] render-
ing the system nonreciprocal with respect to the ports.
Secondly, phase matching of a parametric interaction
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can lead to nonreciprocity, since the signal only inter-
acts with the pump when copropagating with it and
not in the opposite direction. This causes travelling-
wave amplification to be directional [24–27]. Phase-
matching-induced nonreciprocity can also occur in op-
tomechanical systems [28, 29], where parity considera-
tions for the interacting spatial modes apply [30–32]. Fi-
nally, interference in parametrically coupled multi-mode
systems can be used. In these systems nonreciproc-
ity arises due to interference between multiple coupling
pathways along with dissipation in ancillary modes [33].
Here, dissipation is a key resource to break reciprocity,
as it forms a flow of energy always leaving the sys-
tem, even as input and output are interchanged. It has
therefore been viewed as reservoir engineering [34]. Fol-
lowing this approach, nonreciprocity has recently been
demonstrated in Josephson-junctions-based microwave
circuits [35, 36] and in a photonic-crystal-based optome-
chanical circuit [37]. These realisations and theoretical
proposals to achieve nonreciprocity in multi-mode sys-
tems rely on a direct, coherent coupling between the elec-
tromagnetic input and output modes.

Here, in contrast, we describe a scheme to attain recon-
figurable nonreciprocal transmission without a need for
any direct coherent coupling between input and output
modes, using purely optomechanical interactions [28, 29].
This scheme neither requires cavity-cavity interactions
nor phonon-phonon coupling, which are necessary for the
recently demonstrated optomechanical nonreciprocity in
the optical domain [37]. Two paths of transmission be-
tween the microwave modes are established, through two
distinct mechanical modes. Interference between those
paths with di↵ering phases forms the basis of the nonre-
ciprocal process [38, 39]. In fact, due to the finite qual-
ity factor of the intermediary mechanical modes, both
conversion paths between the electromagnetic modes are
partly dissipative in nature. Nonreciprocity is in this case
only possible by breaking the symmetry between the two
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dissipative coupling pathways. We describe the mecha-
nism in detail below, shedding some light on the essential
ingredients for nonreciprocity using this approach.

Results

Theoretical model. We first theoretically model our
system to reveal how nonreciprocity arises. We consider
two microwave modes (described by their annihilation
operators â

1

, â
2

) having resonance frequencies !
c,1, !c,2

and dissipation rates 
1

, 
2

, which are coupled to two me-
chanical modes (described by the annihilation operators
b̂
1

, b̂
2

) having resonance frequencies ⌦
1

, ⌦
2

and dissipa-
tion rates �

m,1, �m,2 (fig. 1A). The radiation-pressure-
type optomechanical interaction has the form [28, 29]
g
0,ij â

†
i âi(b̂j + b̂†j) (in units where h̄ = 1), where g

0,ij

designates the vacuum optomechanical coupling strength
of the ith microwave mode to the jth mechanical mode.
Four microwave tones are applied, close to each of the two
lower sidebands of the two microwave modes, with detun-
ings of �

11

= �
21

= �⌦
1

� � and �
12

= �
22

= �⌦
2

+ �
(fig. 2C). We linearise the Hamiltonian, neglect counter-
rotating terms, and write it in a rotating frame with re-
spect to the mode frequencies (see Suplementary Note
1)

H = �� b̂†
1
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2
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2

+g
11

(â
1

b̂†
1

+â†
1

b̂
1

)+g
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(â
2

b̂†
1

+â†
2

b̂
1

)

+ g
12

(â
1

b̂†
2

+ â†
1

b̂
2

) + g
22

(ei�â
2

b̂†
2

+ e�i�â†
2

b̂
2

) (1)

where âi and b̂j are redefined to be the quantum fluc-
tuations around the linearised mean fields. Here gij =
g
0,ij

p
nij are the field-enhanced optomechanical coupling

strengths, where nij is the contribution to the mean in-
tracavity photon number due to the drive with detun-
ing �ij . Although in principle each coupling is complex,
without loss of generality we can take all to be real except
the one between â

2

and b̂
2

with a complex phase �.
We start by considering frequency conversion through

a single mechanical mode. Neglecting the noise terms,
the field exiting the cavity â

2

is given by â
2,out =

S
21

â
1,in + S

22

â
2,in, which defines the scattering matrix

Sij . For a single mechanical pathway, setting g
12

= g
22

=
0 and � = 0, the scattering matrix between input and
output mode becomes

S
21

(!) =

r

ex,1ex,2


1


2

p
C
11

C
21

�
m,1

�

eff,1

2

� i!
, (2)

where 
ex,1, ex,2 denote the external coupling rates of

the microwave modes to the feedline, and the (multi-
photon) cooperativity for each mode pair is defined as
Cij = 4g2ij/(i�m,j). Conversion occurs within the mod-
ified mechanical response over an increased bandwidth
�
e↵,1 = �

m,1 (1 + C
11

+ C
21

). This scenario, where a
mechanical oscillator mediates frequency conversion be-
tween electromagnetic modes, has recently been demon-
strated [40] with a microwave optomechanical circuit [41],
and moreover used to create a bidirectional link between

a microwave and an optical mode [42]. Optimal conver-
sion, limited by internal losses in the microwave cavities,
reaches at resonance |S

21

|2
max

= 
ex,1ex,2


1


2

in the limit of
large cooperativities C

11

= C
21

� 1.
We next describe nonreciprocal transmission of the full

system with both mechanical modes. We consider the
ratio of transmission amplitudes given by

S
12

(!)

S
21

(!)
=

g
11

�
1

(!)g
21

+ g
12

�
2

(!)g
22

e+i�

g
11

�
1

(!)g
21

+ g
12

�
2

(!)g
22

e�i�
(3)

with the mechanical susceptibilities defined as ��1

1

(!) =
�
m,1/2�i (� + !) and ��1

2

(!) = �
m,2/2+i (� � !). Con-

version is nonreciprocal if the above expression has an
magnitude that di↵ers from 1. If S

21

and S
12

di↵er only
by a phase, it can be eliminated by a redefinition of either
â
1

or â
2

[24, 33]. Upon a change in conversion direction,
the phase � of the coherent coupling (between the mi-
crowave and mechanical mode) is conjugated, while the
complex phase associated with the response of the dis-
sipative mechanical modes remains unchanged. Physi-
cally, scattering from 1 ! 2 is related to scattering from
2 ! 1 via time-reversal, which conjugates phases due
to coherent evolution of the system. Dissipation is un-
touched by such an operation and thus remains invariant.
Indeed, the mechanical dissipation is an essential ingredi-
ent for the nonreciprocity to arise in this system, but not
su�cient on its own. In fact, if we align the frequency
conversion windows corresponding to the two mechanical
modes by setting � = 0, the system becomes reciprocal
on resonance (! = 0), since there is no longer any phase
di↵erence between numerator and denominator. This sit-
uation corresponds to two symmetric pathways resulting
from purely dissipative couplings; they can interfere only
in a reciprocal way.

Conditions for isolation. We study the conditions
for isolation, when backward transmission S

12

vanishes
while forward transmission S

21

is non-zero. A finite
o↵set 2� between the mechanical conversion windows
causes an intrinsic phase shift for a signal on resonance
(! = 0) travelling one path compared to the other, as
it falls either on the red or the blue side of each me-
chanical resonance. The coupling phase � is then ad-
justed to cancel propagation in the backward direction
S
12

(fig. 1C), by cancelling the two terms in the numera-
tor of eq. (3). In general, there is always a frequency ! for
which |g

11

�
1

(!)g
21

| = |g
12

�
2

(!)g
22

|, such that the phase
� can be tuned to cancel transmission in one direction.
Specifically, for two mechanical modes with identical de-
cay rates (�

m,1 = �
m,2 = �

m

) and symmetric couplings
(g

11

g
21

= g
12

g
22

), we find that transmission from ports
2 to 1 vanishes on resonance if

�
m

2�
= tan

�

2
. (4)

The corresponding terms of the denominator will have a
di↵erent relative phase, and the signal will add construc-
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tively instead, in the forward direction (fig. 1B). The de-
vice thus acts as an isolator from â

1

to â
2

, realised with-
out relying on the Josephson nonlinearity [35, 36]. We
now describe the conditions to minimise insertion loss of
the isolator in the forward direction. Still considering the
symmetric case, the cooperativity is set to be the same
for all modes (Cij = C). For a given separation �, trans-
mission on resonance (! = 0) in the isolating direction
has the maximum

|S
21

|2
max

=

ex,1ex,2


1


2

✓
1� 1

2C

◆
(5)

for a cooperativity C = 1/2 + 2�2/�2

m

. As in the case for
a single mechanical pathway in eq. (2), for large coopera-
tivity the isolator can reach an insertion loss only limited
by the internal losses of the microwave cavities.

The unusual and essential role of dissipation in this
nonreciprocal scheme is also apparent in the analysis of
the bandwidth of the isolation. Although the frequency
conversion through a single mechanical mode has a band-
width �

e↵,j (see eq. (2)), caused by the optomechanical
damping of the pumps on the lower sidebands, the non-
reciprocal bandwidth is set by the intrinsic mechanical
damping rates. Examination of eq. (3) reveals that non-
reciprocity originates from the interference of two me-
chanical susceptibilities of widths �

m,j . One can conclude
that the intrinsic mechanical dissipation, which takes en-
ergy out of the system regardless of the transmission di-
rection, is an essential ingredient for the nonreciprocal
behaviour reported here, as discussed previously [33, 34].
In contrast, optomechanical damping works symmetri-
cally between input and output modes. By increasing
the coupling rates, using higher pump powers, the overall
conversion bandwidth increases, while the nonreciprocal
bandwidth stays unchanged.

Experimental realisation. We experimentally realise
this nonreciprocal scheme using a superconducting cir-
cuit optomechanical system in which mechanical motion
is capacitively coupled to a multi-mode microwave cir-
cuit [41]. The circuit, schematically shown in fig. 2A,
supports two electromagnetic modes with resonance fre-
quencies (!

c,1,!c,2) = 2⇡ · (4.1, 5.2) GHz and energy de-
cay rates (

1

,
2

) = 2⇡ · (0.2, 3.4) MHz, both of them
coupled to the same vacuum-gap capacitor. We utilise
the fundamental and second order radially symmetric
(0, 2) modes of the capacitor’s mechanically compliant
top plate [43] (see fig. 2B and D) with resonance frequen-
cies (⌦

1

,⌦
2

) = 2⇡·(6.5, 10.9) MHz, intrinsic energy decay
rates (�

m,1,�m,2) = 2⇡ · (30, 10) Hz and optomechanical
vacuum coupling strengths (g

0,11, g0,12) = 2⇡ · (91, 12)
Hz, respectively (with g

0,11 ⇡ g
0,21 and g

0,12 ⇡ g
0,22,

i.e. the two microwave cavities are symmetrically cou-
pled to the mechanical modes). The device is placed at
the mixing chamber of a dilution refrigerator at 200 mK
and all four incoming pump tones are heavily filtered and
attenuated to eliminate Johnson and phase noise (details
are published elsewhere [44]). We establish a parametric

coupling between the two electromagnetic and the two
mechanical modes by introducing four microwave pumps
with frequencies slightly detuned from the lower motional
sidebands of the resonances, as shown in fig. 2C and as
discussed above. An injected probe signal !

s1(s2)

around
the lower (higher) frequency microwave mode is then
measured in reflection using a vector network analyser.

Frequency conversion in both directions, |S
21

(!)|2 and
|S

12

(!)|2, are measured and compared in fig. 3A-C. The
powers of the four pumps are chosen such that the asso-
ciated individual cooperativities are given by C

11

= 520,
C
21

= 450, C
12

= 1350 and C
22

= 1280. The detun-
ing from the lower motional sidebands is set to � =
2⇡ · 18 kHz. By pumping both cavities on the lower
sideband associated with the same mechanical mode, a
signal injected on resonance with one of the modes will
be frequency converted to the other mode. This process
can add negligible noise, when operating with su�ciently
high cooperativity, as demonstrated recently [40]. In the
experiment, the four drive tones are all phase-locked and
the phase of one tone �

p

is varied continuously from �⇡
to ⇡. The pump phase is linked to the coupling phase �
by a constant o↵set, in our case �

p

⇡ �+⇡. Between the
two transmission peaks corresponding to each mechani-
cal mode, a region of nonreciprocity develops, depending
on the relative phase �

p

.

The amount of reciprocity that occurs in this process is
quantified and measured by the ratio of forward to back-
ward conversion |S

21

/S
12

|2. Figure 3D shows this quan-
tity as a function of probe detuning and the relative pump
phase. Isolation of more than 20 dB is demonstrated in
each direction in a reconfigurable manner, i.e. the direc-
tion of isolation can be switched by taking �

p

! ��
p

,
as expected from eq. (4). The ideal theoretical model,
which takes into account �

m,1 6= �
m,2, predicts that the

bandwidth of the region of nonreciprocity is commensu-
rate with the arithmetic average of the bare mechani-
cal dissipation rates, ⇠ 2⇡ · 20 Hz. However, given the
significantly larger coupling strength of the fundamental
mechanical mode compared to the second order mode,
and that 

2

/⌦
1,2 is not negligible, the pump detuned by

⌦
2

� � from the microwave mode â
2

introduces consid-
erable cross-damping (i.e. resolved sideband cooling) for
the fundamental mode. This cross-damping, measured

separately to be �(cross)

m,1 ⇡ 2⇡ · 20 kHz at the relevant
pump powers, widens the bandwidth of nonreciprocal be-
haviour by over two orders of magnitude and e↵ectively
cools the mechanical oscillator. It also acts as loss in
the frequency conversion process and therefore e↵ectively
lowers the cooperativities to (C

11

, C
21

) ⇡ (0.78, 0.68).
This lowered cooperativity accounts for the overall ⇠10
dB loss in the forward direction. This limitation can be
overcome in a future design by increasing the sideband
resolution with decreased i or utilising the fundamental
modes of two distinct mechanical elements with similar
coupling strengths. To compare the experiment to theory
we use a model that takes into account the cross-damping
and an increased e↵ective mechanical dissipation of the
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fundamental mode. The model is compared to the exper-
imental data in fig. 3E, showing good qualitative agree-
ment.

Noise properties. From a technological standpoint,
it does not su�ce for an isolator to have the required
transmission properties; since its purpose is to protect
the input from any noise propagating in the backward
direction, the isolator’s own noise emission is relevant.
We therefore return to the theoretical description of
the ideal symmetric case and derive the noise proper-
ties expected from the device, in the limit of overcou-
pled cavities (

ex,i ⇡ i). In the forward direction and
on resonance, the emitted noise amounts to N

fw

(0) =
1/2 + (n̄

m,1 + n̄
m,2)/(4C), where n̄

m,j is the thermal oc-
cupation of each mechanical mode (see Supplementary
Note 2). In the limit of low insertion loss and large co-
operativity, the added noise becomes negligible in the
forward direction. More relevant for the purpose of us-
ing an isolator to protect sensitive quantum apparatus
is the noise emitted in the backward direction, given by
N

bw

(0) = 1/2 + (n̄
m,1 + n̄

m,2)/2. Here the noise is di-
rectly commensurate with the occupation of the mechan-
ics which can be of hundreds of quanta even at cryogenic
millikelvin temperatures, due to the low mechanical fre-
quencies. This is a direct consequence of isolation with-
out reflection, since it prevents fluctuations from either
cavity to emerge in the backward direction. In order to
preserve the commutation relations of the bosonic out-
put modes, the fluctuations consequently have to origi-
nate from the mechanical modes. A practical low-noise
design therefore requires a scheme to externally cool the
mechanical modes, e.g. via sideband cooling using an
additional auxiliary microwave mode.

The origin of this noise asymmetry can be understood
as noise interference. The thermal fluctuations of one
mechanical oscillator are converted to microwave noise in
each cavity through two paths, illustrated in fig. 4A, D: a
direct (orange) and an indirect (yellow) link. Each path-
way, on its own and with the same coupling strength,
would result in symmetric noise that decreases in mag-
nitude with increasing cooperativity. When both are
present, however, the noise interferes with itself di↵er-
ently in each direction (see Supplementary Note 3). In
the forward direction, the noise interferes destructively
(fig. 4B) leading to low added noise, but in the back-
ward direction a sharp interference peak arises (fig. 4E)
with finite noise in the nonreciprocal bandwidth even
in the high-cooperativity limit. In an intuitive picture,
the circuit acts as a circulator that routes noise from
the output port to the mechanical thermal bath and in
turn the mechanical noise to the input port. We demon-
strate experimentally the noise asymmetry by detect-
ing the output spectra at each microwave mode while
the device isolates the mode â

1

from â
2

by more than
25 dB (fig. 4C, F). The cooperativities are here set to
(C

11

, C
21

, C
12

, C
22

) = (20.0, 14.2, 106, 89) with a cross-

damping �(cross)

m,1 ⇡ 2⇡ · 2.6 kHz, in order to optimise the

circuit for a lower insertion loss and increase the noise
visibility. As there is additional cooling from the o↵-
resonant pump on mode b̂

1

, we expect noise from b̂
2

to
dominate.

Quantum-limited circulator. There exists a way to
circumvent the mechanical noise entirely: introducing
one extra microwave mode â

3

, we can realise a circulator,
where instead of mechanical fluctuations, the fluctuations
from the third microwave mode emerge in the backward
direction. The scheme is illustrated in fig. 5A. As before,
the two mechanical modes are used to create two interfer-
ing pathways, now between the three microwave cavities.
Since there are now two independent loops, two phases
matter; we choose the phases associated to the couplings
g
11

and g
21

and set them respectively to �
1

= 2⇡/3
and �

2

= �2⇡/3. With the mechanical detunings set

to �i =
p
3

2

(C + 1

3

)�
m,i, the system then becomes a cir-

culator that routes the input of port â
1

to â
2

, â
2

to â
3

and so on (see Supplementary Note 4). Critically and
in contrast to above, counter-propagating signals are not
dissipated in the mechanical oscillators, but directed to
the other port, with two advantages. First, the band-
width of nonreciprocity is not limited to the mechanical
dissipation rate, but instead increases with C until reach-
ing the ultimate limit given by the cavity linewidth (see
fig. 5B and C). Second, the mechanical noise emission is
symmetrically spread between the three modes, and over
the wide conversion bandwidth (see fig. 5D and E). In
the large cooperativity limit, the nonreciprocal process
becomes quantum limited, irrespective of the tempera-
ture of the mechanical thermal baths.

Discussion

In conclusion, we described and experimentally demon-
strated a new scheme for reconfigurable nonreciprocal
transmission in the microwave domain using a supercon-
ducting optomechanical circuit. This scheme is based
purely on optomechanical couplings, thus it alleviates
the need for coherent microwave cavity-cavity (or di-
rect phonon-phonon) interactions, and significantly fa-
cilitates the experimental realisation, in contrast to re-
cently used approaches of optomechanical nonreciprocity
in the optical domain [37]. Nonreciprocity arises due to
interference in the two mechanical modes, which medi-
ate the microwave cavity-cavity coupling. This interfer-
ence also manifests itself in the asymmetric noise output
of the circuit. This scheme can be readily extended to
implement quantum-limited phase-preserving and phase-
sensitive directional amplifiers [45]. Moreover, an ad-
ditional microwave mode enables quantum-limited mi-
crowave circulators on-chip with large bandwidth, limited
only by the energy decay rate of the microwave modes.
Finally, the presented scheme can be generalised to an
array, and thus can form the basis to create topological
phases of light and sound [46] or topologically protected
chiral amplifying states [47] in arrays of electromechan-
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ical circuits, without requiring cavity-cavity or phonon-
phonon mode hopping interactions.
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reciprocity and magnetic-free isolation based on optome-
chanical interactions. Nature Communications 7, 13662
(2016).

[33] Ranzani, L. & Aumentado, J. Graph-based analysis of
nonreciprocity in coupled-mode systems. New Journal of
Physics 17, 023024 (2015).

[34] Metelmann, A. & Clerk, A. Nonreciprocal Photon Trans-
mission and Amplification via Reservoir Engineering.
Physical Review X 5, 021025 (2015).

[35] Sliwa, K. et al. Reconfigurable Josephson Circula-
tor/Directional Amplifier. Physical Review X 5, 041020
(2015).

[36] Lecocq, F. et al. Nonreciprocal microwave signal process-
ing with a field-programmable josephson amplifier. Phys.
Rev. Applied 7, 024028 (2017).

[37] Fang, K. et al. Generalized non-reciprocity in an optome-
chanical circuit via synthetic magnetism and reservoir
engineering. Nat Phys 13, 465–471 (2017).

[38] Xu, X.-W., Li, Y., Chen, A.-X. & Liu, Y.-x. Nonrecipro-
cal conversion between microwave and optical photons in
electro-optomechanical systems. Physical Review A 93,
023827 (2016).

[39] Tian, L. & Li, Z. Nonreciprocal State Conversion be-
tween Microwave and Optical Photons. arXiv:1610.09556
[cond-mat, physics:quant-ph] (2016). ArXiv: 1610.09556.

[40] Lecocq, F., Clark, J., Simmonds, R., Aumentado, J. &
Teufel, J. Mechanically Mediated Microwave Frequency
Conversion in the Quantum Regime. Physical Review
Letters 116, 043601 (2016).

[41] Teufel, J. D. et al. Circuit cavity electromechanics in the
strong-coupling regime. Nature 471, 204–208 (2011).

[42] Andrews, R. W. et al. Bidirectional and e�cient conver-
sion between microwave and optical light. Nature Physics
10, 321–326 (2014).

[43] Cicak, K. et al. Low-loss superconducting resonant cir-
cuits using vacuum-gap-based microwave components.
Applied Physics Letters 96, 093502 (2010).
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FIGURES 7

FIG. 1. Optomechanical nonreciprocal transmission via interference of two asymmetric dissipative coupling
pathways. (a) Two microwave modes â1 and â2 are coupled via two mechanical modes b̂1 and b̂2 through optomechanical
frequency conversion (as given by the coupling constants g11, g21, g12, g22). Nonreciprocity is based on the interference between
the two optomechanical (conversion) pathways g11, g21 and g12, g22, in the presence of a suitably chosen phase di↵erence �
between the coupling constants as well as the deliberate introduction of an asymmetry in the pathways. (b,c) The symmetry
between the pathways can be broken by o↵-setting the optomechanical transmission windows through each mechanical mode
(dashed lines in dark and light green) by a frequency di↵erence 2�, resulting in di↵erent |S21| and |S12| (solid lines). Each
single pathway, in the absence of the other mode, is described by eq. (2). In the forward direction (b), the two paths interfere
constructively, allowing transmission and a finite scattering matrix element S21 on resonance with the first microwave cavity.
In contrast, in the backward direction (c), the paths interfere destructively, such that S12 ⇡ 0, thereby isolating port 1 from
port 2 on resonance with the second microwave cavity. The isolation bandwidth is determined by the intrinsic dissipation rate
of the mechanical modes.

FIG. 2. Implementation of a superconducting microwave circuit optomechanical device for nonreciprocity. (a) A
superconducting circuit featuring two electromagnetic modes in the microwave domain is capacitively coupled to a mechanical
element (a vacuum-gap capacitor, dashed rectangle) and inductively coupled to a microstrip feedline. The end of the feedline
is grounded and the circuit is measured in reflection. (b) Scanning electron micrograph of the drum-head-type vacuum gap
capacitor (dashed rectangle in a) with a gap distance below 50 nm, made from aluminium on a sapphire substrate. The scale
bar indicates 2 µm. (c) Frequency domain schematic of the microwave pump setup to achieve nonreciprocal mode conversion.
Microwave pumps (red bars) are placed at the lower motional sidebands - corresponding to the two mechanical modes - of both
microwave resonances (dashed purple lines). The pumps are detuned from the exact sideband condition by ±� = 2⇡ · 18 kHz,
creating two optomechanically induced transparency windows detuned by 2� from the microwave resonance frequencies (denoted
by !c,1 and !c,1, vertical dashed line). The phase �p of one the pumps is tuned. The propagation of an incoming signal (with
frequency !s,1 or !s,2, solid grey bar) in the forward and backward direction depends on this phase and nonreciprocal microwave
transmission can be achieved. (d) Finite-element simulation of the displacement of the fundamental (0, 1) and second order
radially symmetric (0, 2) mechanical modes (with measured resonant frequencies ⌦1/2⇡ = 6.5 MHz and ⌦2/2⇡ = 10.9 MHz,
respectively) which are exploited as intermediary dissipative modes to achieve nonreciprocal microwave conversion.

FIG. 3. Experimental demonstration of nonreciprocity. (a-c) Power transmission between modes 1 and 2 as a function
of probe detuning, shown in both directions for pump phases �p = �0.8⇡, 0, 0.8⇡ radians (respectively a, b and c). Isolation
of more than 20 dB in the forward (c) and backward (a) directions is demonstrated, as well as reciprocal behaviour (b).
(d) The ratio of transmission |S21/S12|2, representing a measure of nonreciprocity, is shown as a function of pump phase �p

and probe detuning. Two regions of nonreciprocity develop, with isolation in each direction. The system is reconfigurable as
the direction of isolation can be swapped by taking �p ! ��p. (e) Theoretical ratio of transmission from eq. (3), calculated
with independently estimated experimental parameters. The theoretical model includes e↵ectively lowered cooperativities for
the mechanical mode b̂1 due to cross-damping (optomechanical damping of the lower frequency mechanical mode by the pump
on the sideband of the higher frequency mechanical mode) acting as an extra loss channel.

FIG. 4. Asymmetric noise emission of the nonreciprocal circuit. The noise emission is mainly due to mechanical
thermal noise, that is converted through two paths to the microwave modes. The resulting interference creates a di↵erent noise
pattern in the forward (a-c) and the backward (d-f) directions when the circuit is tuned as an isolator from mode â1 to â2.
(a,d) The two possible paths for the noise are shown for each mechanical mode. For b̂2, the direct path (orange) and the
indirect path going through mode b̂1 (yellow) are highlighted (the corresponding paths for b̂1 are shown in grey). (b,e) Each
path on its own would result in a wide noise spectrum that is equally divided between the two microwave cavities (dashed yellow
and orange lines). When both paths are available, however, the noise interferes di↵erently in each direction (solid lines). In
the backward direction (e), a sharp interference peak appears, of much larger amplitude than the broad base. The theoretical
curves (on an arbitrary logarithmic scale) are shown for the symmetric case (�m,1 = �m,2) and for the single mode b̂2. Note
that for the mode b̂1, the shape of the asymmetric peak in the backward noise would be the mirror image. (c,f) Measured
output spectra of modes â2 (c) and â1 (f), calibrated to show the photon flux leaving the circuit. Because cross-damping
provides extra cooling for the mode b̂1, the thermal noise of b̂2 is expected to dominate.



FIGURES 8

FIG. 5. Proposal for a microwave optomechanical circulator. (a) With a third microwave mode â3 coupled to the same
two mechanical oscillators, circulation can be achieved between the three microwave cavities. The circuit now involves two
independent loops, with two phases �1 and �2 that can be tuned with the phases associated with g21 and g11, respectively.
(b,c) The theoretical transmission in the circulating direction (counter-clockwise, in red) and the opposite direction (clockwise,
in blue) are shown for the cooperativities C = 100 (b) and C = 1000 (c). The isolation bandwidth scales with C and is only
limited by the energy decay rates of the microwave modes. Experimentally realistic parameters are chosen with overcoupled
cavities of energy decay rates 1 = 2 = 3 = 2⇡ · 200 kHz and �m,1 = �m,2 = 2⇡ · 100 Hz. (d,e) Noise emission spectra for
the same two cooperativities (C = 100 (d) and C = 1000 (e)), for n̄m,1 = n̄m,2 = 800. Note that for the circulator the noise is
symmetric for all the cavities, and that it decreases with increasing cooperativity.
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