17 research outputs found

    Reversed-phase high-performance liquid chromatography–fluorescence detection for the analysis of glutathione and its precursor γ-glutamyl cysteine in wines and model wines supplemented with oenological inactive dry yeast preparations

    Get PDF
    El pdf del artículo es la versión pre-print.A reversed-phase high-performance liquid chromatography-fluorescence detection methodology involving a pre-column derivatization procedure using 2,3-naphtalenedialdehyde in the presence of 5 and 0. 5 mM of dithiothreitol to determine total and reduced glutathione (GSH) and γ-glutamyl-cysteine (γ-glu-cys) in musts and wines has been set up and validated. The proposed method showed good linearity (R 2 >99% for reduced and total GSH, and R 2 >98% for γ-glu-cys) in synthetic wines, over a wide range of concentration (0-10 mg L -1). The limits of detection for reduced GSH in synthetic and real wines were almost the same (0. 13 and 0. 15 mg L -1, respectively) and slightly higher for γ-glu-cys (0. 24 mg L -1). The application of the method allowed knowing, for the first time, the amount of total and reduced GSH and γ-glu-cys released into synthetic wines by oenological preparations of commercial inactive dry yeast (IDY). In addition, the evolution of these three compounds during the winemaking and shelf life (0-9 months) of an industrially manufactured rosé wine supplemented with a GSH-enriched IDY showed that although GSH is effectively released from IDY, it is rapidly oxidized during alcoholic fermentation, contributing to the higher total GSH content determined in wines supplemented with GSH-enriched IDYs compared to control wines. © 2011 Springer Science+Business Media, LLC.IAO and JJRB acknowledge CAM and CSIC for their respective research grants. This work has been founded by PET2007-0134 project.Peer Reviewe

    Two-component signal transduction in Corynebacterium glutamicum and other corynebacteria: on the way towards stimuli and targets

    Get PDF
    In bacteria, adaptation to changing environmental conditions is often mediated by two-component signal transduction systems. In the prototypical case, a specific stimulus is sensed by a membrane-bound histidine kinase and triggers autophosphorylation of a histidine residue. Subsequently, the phosphoryl group is transferred to an aspartate residue of the cognate response regulator, which then becomes active and mediates a specific response, usually by activating and/or repressing a set of target genes. In this review, we summarize the current knowledge on two-component signal transduction in Corynebacterium glutamicum. This Gram-positive soil bacterium is used for the large-scale biotechnological production of amino acids and can also be applied for the synthesis of a wide variety of other products, such as organic acids, biofuels, or proteins. Therefore, C. glutamicum has become an important model organism in industrial biotechnology and in systems biology. The type strain ATCC 13032 possesses 13 two-component systems and the role of five has been elucidated in recent years. They are involved in citrate utilization (CitAB), osmoregulation and cell wall homeostasis (MtrAB), adaptation to phosphate starvation (PhoSR), adaptation to copper stress (CopSR), and heme homeostasis (HrrSA). As C. glutamicum does not only face changing conditions in its natural environment, but also during cultivation in industrial bioreactors of up to 500 m3 volume, adaptability can also be crucial for good performance in biotechnological production processes. Detailed knowledge on two-component signal transduction and regulatory networks therefore will contribute to both the application and the systemic understanding of C. glutamicum and related species

    Role of phosphate limitation and pyruvate decarboxylase in rewiring of the metabolic network for increasing flux towards isoprenoid pathway in a TATA binding protein mutant of Saccharomyces cerevisiae

    No full text
    Background: Production of isoprenoids, a large and diverse class of commercially important chemicals, can be achieved through engineering metabolism in microorganisms. Several attempts have been made to reroute metabolic flux towards isoprenoid pathway in yeast. Most approaches have focused on the core isoprenoid pathway as well as on meeting the increased precursors and cofactor requirements. To identify unexplored genetic targets that positively influence the isoprenoid pathway activity, a carotenoid based genetic screen was previously developed and three novel mutants of a global TATA binding protein SPT15 was isolated for heightened isoprenoid flux in Saccharomyces cerevisiae. Results: In this study, we investigated how one of the three spt15 mutants, spt15_Ala101Thr, was leading to enhanced isoprenoid pathway flux in S. cerevisiae. Metabolic flux analysis of the spt15_Ala101Thr mutant initially revealed a rerouting of the central carbon metabolism for the production of the precursor acetyl-CoA through activation of pyruvate-acetaldehyde-acetate cycle in the cytoplasm due to high flux in the reaction caused by pyruvate decarboxylase (PDC). This led to alternate routes of cytosolic NADPH generation, increased mitochondrial ATP production and phosphate demand in the mutant strain. Comparison of the transcriptomics of the spt15_Ala101Thr mutant cell with SPT15WT bearing cells shows upregulation of phosphate mobilization genes and pyruvate decarboxylase 6 (PDC6). Increasing the extracellular phosphate led to an increase in the growth rate and biomass but diverted flux away from the isoprenoid pathway. PDC6 is also shown to play a critical role in isoprenoid pathway flux under phosphate limitation conditions. Conclusion: The study not only proposes a probable mechanism as to how a spt15_Ala101Thr mutant (a global TATA binding protein mutant) could increase flux towards the isoprenoid pathway, but also PDC as a new route of metabolic manipulation for increasing the isoprenoid flux in yeast
    corecore