76 research outputs found

    Chaperonopathies and Chaperonotherapy. Hsp60 as Therapeutic Target in Cancer: Potential Benefits and Risks.

    Get PDF
    In this minireview we focus on Hsp60 as a target for anticancer therapy. We discuss the new concepts of chaperonopathies and chaperonotherapy and present information on Hsp60 localization in the cell membrane of human tumor cells. We describe novel mechanisms for Hsp60 reaching the extracellular environment that involve membrane-associated stages, as well as data on anti-Hsp60 antibodies found in human sera, both in normal subjects and patients affected by autoimmune diseases. Finally, we discuss possible therapeutic applications of anti-Hsp60 antibodies in cancer treatment, evaluating also side effects on non-tumor cells. In conclusion, the way for investigating Hsp60-targeted anti-tumor therapy is open, at least for those tumors that express Hsp60 on its surface and/or secrete it outside the cell, as is the search for the molecular mechanisms involved in Hsp60 translocation from cytosol to cell membrane: elucidation of this mechanism will greatly facilitate the optimization of chaperonotherapy centered on Hsp60 with anti-tumor efficacy and minimal side effects

    Functions and Therapeutic Potential of Extracellular Hsp60, Hsp70, and Hsp90 in Neuroinflammatory Disorders

    Get PDF
    Neuroinflammation is implicated in central nervous system (CNS) diseases, but the molecular mechanisms involved are poorly understood. Progress may be accelerated by developing a comprehensive view of the pathogenesis of CNS disorders, including the immune and the chaperone systems (IS and CS). The latter consists of the molecular chaperones; cochaperones; and chaperone cofactors, interactors, and receptors of an organism and its main collaborators in maintaining protein homeostasis (canonical function) are the ubiquitin-proteasome system and chaperone-mediated autophagy. The CS has also noncanonical functions, for instance, modulation of the IS with induction of proinflammatory cytokines. This deserves investigation because it may be at the core of neuroinflammation, and elucidation of its mechanism will open roads toward developing efficacious treatments centered on molecular chaperones (i.e., chaperonotherapy). Here, we discuss information available on the role of three members of the CS-heat shock protein (Hsp)60, Hsp70, and Hsp90-in IS modulation and neuroinflammation. These three chaperones occur intra- and extracellularly, with the latter being the most likely involved in neuroinflammation because they can interact with the IS. We discuss some of the interactions, their consequences, and the molecules involved but many aspects are still incompletely elucidated, and we hope that this review will encourage research based on the data presented to pave the way for the development of chaperonotherapy. This may consist of blocking a chaperone that promotes destructive neuroinflammation or replacing or boosting a defective chaperone with cytoprotective activity against neurodegeneration

    NF-kB Regulation and the Chaperone System Mediate Restorative Effects of the Probiotic Lactobacillus fermentum LF31 in the Small Intestine and Cerebellum of Mice with Ethanol-Induced Damage

    Get PDF
    Probiotics are live microorganisms that yield health benefits when consumed, generally by improving or restoring the intestinal flora (microbiota) as part of the muco-microbiotic layer of the bowel. In this work, mice were fed with ethanol alone or in combination with the probiotic Lactobacillus fermentum (L. fermentum) for 12 weeks. The modulation of the NF-kappa B signaling pathway with the induction of Hsp60, Hsp90, and IkB-alpha by the probiotic occurred in the jejunum. L. fermentum inhibited IL-6 expression and downregulated TNF-alpha transcription. NF-kappa B inactivation concurred with the restoration of the intestinal barrier, which had been damaged by ethanol, via the production of tight junction proteins, ameliorating the ethanol-induced intestinal permeability. The beneficial effect of the probiotic on the intestine was repeated for the cerebellum, in which downregulation of glial inflammation-related markers was observed in the probiotic-fed mice. The data show that L. fermentum exerted anti-inflammatory and cytoprotective effects in both the small intestine and the cerebellum, by suppressing ethanol-induced increased intestinal permeability and curbing neuroinflammation. The results also suggest that L. fermentum could be advantageous, along with the other available means, for treating intestinal diseases caused by stressors associated with inflammation and dysbiosis

    Clinical anatomic, immunomorphologic and molecular anatomic data suggest interplay of thyroidal molecules, autoantibodies and Hsp60 in Hashimoto’s disease

    Get PDF
    Hsp60 is, typically, a mitochondrial protein, but it also occurs in the cytosol, vesicles, and plasma membrane, and in the intercellular space and biological fluids, e.g., blood. Changes in the levels and distribution of Hsp60 are linked to several pathologies, including cancer and chronic inflammatory and autoimmune disorders. What is the histopathological pattern of Hsp60 in the thyroid of Hashimoto’s patients? Are there indications of a pathogenic role of Hsp60 that may make Hashimoto’s thyroiditis a chaperonopathy? Experiments reported here provide information regarding those questions. We found by various immunomorphological techniques increased levels of Hsp60 in the thyroid from HT patients, localized to thyrocytes of small and degenerated follicles and to oncocytes (Hurtle cells). Immunofluorescence showed the chaperonin both inside the cells and also in the plasma membrane, especially in oncocytes. We also found that Hsp60 levels in the blood of HT patients were increased compared to controls and correlated with those of autoantibodies against two distinctive thyroidal proteins, thyroglobulin (TG) and thyroid peroxidase (TPO) (r=0.379, p=0.0103; r=0.484, p=0.0008; respectively). Molecular analysis of these two proteins in comparison with Hsp60 demonstrated various regions of high structural similarity shared by them, which could very well be immunologically crossreactive epitopes. Thus, it is likely that the three proteins potentiate each other as immunogens to elicit autoantibodies and, as antigens, to cause antigen-antibody reactions at those sites in which Hsp60 is exposed, for example the surface of oncocytes. This would lead to inflammation and oncocyte lysis with destruction of thyroidal tissue. The cytometric bead assay revealed that recombinant Hsp60 did not induce increment of cytokine production by peripheral blood mononuclear cells from HT patients. Consequently, we propose that Hsp60 is implicated in the pathogenesis of Hashimoto’s thyroiditis as autoantigen, via a participation of autoantibodies that also recognize TG and TPO, whereas participation of inflammatory cytokines induced by the chaperonin is unlikely. Supported by IEMEST (FC and AJLM)

    A multipronged approach to unveil the emerging role of Hsp60 in chronic obstructive pulmonary disease

    Get PDF
    Inflammation is a major component of chronic obstructive pulmonary disease (COPD) and its cause and mechanisms are still incompletely understood. For example, the role of heat shock proteins (Hsps), many of which are molecular chaperones, has not been explored in detail in COPD, despite the fact that these molecules are known to participate in inflammation in other diseases. It has been shown that extracellular Hsps can signal certain types of T cells, macrophages, dendritic cells, and neutrophils and, thereby, elicit inflammation and immunity. However, these phenomena have not been investigated in COPD despite: a) the increasing awareness of Hsp participation in inflammation and immunity; and b) the fact that this disease is waiting for new knowledge to benefit from effective treatment and continues to be one of the commonest and most serious illnesses in the Western countries. We developed a strategy to study Hsps in COPD involving a multipronged approach, using in vivo and in vitro methods, which would, at least in part, compensate for the limitations inherent to the analysis of human diseases. We determined the levels of six Hsps in bronchial mucosa biopsies, as well as several inflammatory markers, from patients at various stages compared to smoker and non-smoker controls by immunohistochemistry, and found significant increase of Hsp60, Hsp10, and Hsp40 in COPD but no changes for Hsp27, Hsp70 and Hsp90. We also found that the increase in Hsp60 positively correlated with number of neutrophils, and it localized in them. Hsp60 has been implicated in human inflammatory pathology; hence it was pertinent to investigate whether the chaperonin originated only in the neutrophils or also in other cells. In vitro experiments showed that in bronchial epithelial cells submitted to oxidative stress, a characteristic of COPD mucosa, Hsp60 was overexpressed and was released into the extracellular medium. Other measurements indicated that NFkB-p65 was involved in the hsp60-gene upregulation whereas HSF-1 apparently was not. All the data we obtained using a battery of complementary in vivo and in vitro methods coincided to indicate that Hsp60 plays an active role in inflammation in COPD. Hence, one can infer that the chaperonin does contribute to the etiology and/or pathogenesis of COPD and that it is pertinent to investigate this aspect of Hsp60 biology-COPD pathology with renewed intensity. The results could have a significant impact on the developing of strategies for diagnosis, determining prognosis, and treatment that should be centered on Hsp60

    Thermotolerance and molecular chaperone function of the small heat shock protein HSP20 from hyperthermophilic archaeon, Sulfolobus solfataricus P2

    Get PDF
    Small heat shock proteins are ubiquitous in all three domains (Archaea, Bacteria and Eukarya) and possess molecular chaperone activity by binding to unfolded polypeptides and preventing aggregation of proteins in vitro. The functions of a small heat shock protein (S.so-HSP20) from the hyperthermophilic archaeon, Sulfolobus solfataricus P2 have not been described. In the present study, we used real-time polymerase chain reaction analysis to measure mRNA expression of S.so-HSP20 in S. solfataricus P2 and found that it was induced by temperatures that were substantially lower (60°C) or higher (80°C) than the optimal temperature for S. solfataricus P2 (75°C). The expression of S.so-HSP20 mRNA was also up-regulated by cold shock (4°C). Escherichia coli cells expressing S.so-HSP20 showed greater thermotolerance in response to temperature shock (50°C, 4°C). By assaying enzyme activities, S.so-HSP20 was found to promote the proper folding of thermo-denatured citrate synthase and insulin B chain. These results suggest that S.so-HSP20 promotes thermotolerance and engages in chaperone-like activity during the stress response

    Chlamydia trachomatis Infection and Anti-Hsp60 Immunity: The Two Sides of the Coin

    Get PDF
    Chlamydia trachomatis (CT) infection is one of the most common causes of reproductive tract diseases and infertility. CT-Hsp60 is synthesized during infection and is released in the bloodstream. As a consequence, immune cells will produce anti-CT-Hsp60 antibodies. Hsp60, a ubiquitous and evolutionarily conserved chaperonin, is normally sequestered inside the cell, particularly into mitochondria. However, upon cell stress, as well as during carcinogenesis, the chaperonin becomes exposed on the cell surface (sf-Hsp60) and/or is secreted from cells into the extracellular space and circulation. Reports in the literature on circulating Hsp and anti-Hsp antibodies are in many cases short on details about Hsp60 concentrations, and about the specificity spectra of the antibodies, their titers, and their true, direct, pathogenetic effects. Thus, more studies are still needed to obtain a definitive picture on these matters. Nevertheless, the information already available indicates that the concurrence of persistent CT infection and appearance of sf-Hsp60 can promote an autoimmune aggression towards stressed cells and the development of diseases such as autoimmune arthritis, multiple sclerosis, atherosclerosis, vasculitis, diabetes, and thyroiditis, among others. At the same time, immunocomplexes composed of anti-CT-Hsp60 antibodies and circulating Hsp60 (both CT and human) may form deposits in several anatomical locations, e.g., at the glomerular basal membrane. The opposite side of the coin is that pre-tumor and tumor cells with sf-Hsp60 can be destroyed with participation of the anti-Hsp60 antibody, thus stopping cancer progression before it is even noticed by the patient or physician

    Convergent Sets of Data from In Vivo and In Vitro Methods Point to an Active Role of Hsp60 in Chronic Obstructive Pulmonary Disease Pathogenesis

    Get PDF
    BACKGROUND: It is increasingly clear that some heat shock proteins (Hsps) play a role in inflammation. Here, we report results showing participation of Hsp60 in the pathogenesis of chronic obstructive pulmonary diseases (COPD), as indicated by data from both in vivo and in vitro analyses. METHODS AND RESULTS: Bronchial biopsies from patients with stable COPD, smoker controls with normal lung function, and non-smoker controls were studied. We quantified by immunohistochemistry levels of Hsp10, Hsp27, Hsp40, Hsp60, Hsp70, Hsp90, and HSF-1, along with levels of inflammatory markers. Hsp10, Hsp40, and Hsp60 were increased during progression of disease. We found also a positive correlation between the number of neutrophils and Hsp60 levels. Double-immunostaining showed that Hsp60-positive neutrophils were significantly increased in COPD patients. We then investigated in vitro the effect on Hsp60 expression in bronchial epithelial cells (16HBE) caused by oxidative stress, a hallmark of COPD mucosa, which we induced with H\u2082O\u2082. This stressor determined increased levels of Hsp60 through a gene up-regulation mechanism involving NFkB-p65. Release of Hsp60 in the extracellular medium by the bronchial epithelial cells was also increased after H\u2082O\u2082 treatment in the absence of cell death. CONCLUSIONS: This is the first report clearly pointing to participation of Hsps, particularly Hsp60, in COPD pathogenesis. Hsp60 induction by NFkB-p65 and its release by epithelial cells after oxidative stress can have a role in maintaining inflammation, e.g., by stimulating neutrophils activity. The data open new scenarios that might help in designing efficacious anti-inflammatory therapies centered on Hsp60 and applicable to COP

    Hsp60 chaperonopathies and chaperonotherapy: targets and agents.

    Get PDF

    Phylogeny Disambiguates the Evolution of Heat-Shock cis-Regulatory Elements in Drosophila

    Get PDF
    Heat-shock genes have a well-studied control mechanism for their expression that is mediated through cis-regulatory motifs known as heat-shock elements (HSEs). The evolution of important features of this control mechanism has not been investigated in detail, however. Here we exploit the genome sequencing of multiple Drosophila species, combined with a wealth of available information on the structure and function of HSEs in D. melanogaster, to undertake this investigation. We find that in single-copy heat shock genes, entire HSEs have evolved or disappeared 14 times, and the phylogenetic approach bounds the timing and direction of these evolutionary events in relation to speciation. In contrast, in the multi-copy gene Hsp70, the number of HSEs is nearly constant across species. HSEs evolve in size, position, and sequence within heat-shock promoters. In turn, functional significance of certain features is implicated by preservation despite this evolutionary change; these features include tail-to-tail arrangements of HSEs, gapped HSEs, and the presence or absence of entire HSEs. The variation among Drosophila species indicates that the cis-regulatory encoding of responsiveness to heat and other stresses is diverse. The broad dimensions of variation uncovered are particularly important as they suggest a substantial challenge for functional studies
    • …
    corecore