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Abstract: Neuroinflammation is implicated in central nervous system (CNS) diseases, but the molec-
ular mechanisms involved are poorly understood. Progress may be accelerated by developing a
comprehensive view of the pathogenesis of CNS disorders, including the immune and the chaperone
systems (IS and CS). The latter consists of the molecular chaperones; cochaperones; and chaperone
cofactors, interactors, and receptors of an organism and its main collaborators in maintaining protein
homeostasis (canonical function) are the ubiquitin–proteasome system and chaperone-mediated
autophagy. The CS has also noncanonical functions, for instance, modulation of the IS with induction
of proinflammatory cytokines. This deserves investigation because it may be at the core of neu-
roinflammation, and elucidation of its mechanism will open roads toward developing efficacious
treatments centered on molecular chaperones (i.e., chaperonotherapy). Here, we discuss information
available on the role of three members of the CS—heat shock protein (Hsp)60, Hsp70, and Hsp90—in
IS modulation and neuroinflammation. These three chaperones occur intra- and extracellularly, with
the latter being the most likely involved in neuroinflammation because they can interact with the
IS. We discuss some of the interactions, their consequences, and the molecules involved but many
aspects are still incompletely elucidated, and we hope that this review will encourage research based
on the data presented to pave the way for the development of chaperonotherapy. This may consist
of blocking a chaperone that promotes destructive neuroinflammation or replacing or boosting a
defective chaperone with cytoprotective activity against neurodegeneration.

Keywords: chaperone system; molecular chaperones; Alzheimer’s disease; Parkinson’s disease; Hunting-
ton’s disease; amyotrophic lateral sclerosis; multiple sclerosis; chaperonotherapy; chaperonopathies

1. Introduction

Neuroinflammation occurs in brain injury and chronic neurodegenerative diseases
affecting the central nervous system (CNS) [1–5]. The CNS is characterized by two main
types of cells: neurons and neuroglia. The former’s function is impulse transmission
and signaling, while the latter play other roles [6]. For instance, microglia and astrocytes,
resident antigen-presenting cells (APCs), rapidly respond to tissue damage that compro-
mises the homeostasis of the local brain parenchyma [7]. Microglia activation is a highly
regulated process involved in the generation of different and complex phenotypes, the
reorganization of cell surface markers, and the release of soluble pro-and anti-inflammatory
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factors. Neuroinflammation is a complex cellular and biochemical response that increases
inflammatory mediators (such as cytokines and chemokines) and activates glial cells and
leukocyte invasion of brain tissue. These events have been correlated with an increased
permeability of the blood–brain barrier (BBB). Microglial cells can remain activated for long
periods, which causes the release of large amounts of cytokines and neurotoxic molecules
that contribute to neurodegeneration [8]. It is important to bear in mind that inflammation
is not necessarily deleterious because moderate inflammatory reactions are involved in
diverse phenomena that protect cells and tissues from a variety of noxae [9]. Whether
inflammation is good or bad for the organism depends mostly on the intensity and duration
of the inflammatory reaction: the more intense and long lasting the reaction, the higher
the probability of disease development or aggravation. In inflammatory and immune
reactions, molecular chaperones interact with the immune system, especially when they
are activated under stress conditions in different organs, including the brain. Molecular
chaperones, many of which are heat shock proteins (Hsps), are the main components
of the chaperone system [10,11]. They are ubiquitously expressed, and their canonical
role is to assist in the folding of nascent polypeptides avoiding protein misfolding and
aggregation, and to deliver damaged proteins to protein degradation machineries [10,12].
The levels of some chaperones change in response to stressors, for example, oxidative
stress and DNA damage [13]. Typically, chaperones are cytoprotective, but they can also be
pathogenic when they are structurally and/or functionally abnormal and can contribute to
the mechanism of diseases termed chaperonopathies [10]. Chaperonopathies are involved
in the development of some neurodegenerative diseases in which neuroinflammation is
implicated. The role played by chaperones in neuroinflammation is under scrutiny and con-
stitutes a promising area of research because it may lead to the discovery of novel treatment
strategies centered on chaperonotherapy, namely, the use of chaperones as therapeutic
targets or agents [14,15]. Here, we discuss molecular chaperones within the context of
neurodegenerative diseases/neuroinflammation and the interactions between the immune
system and the chaperoning system, focusing on extracellular Hsp60, Hsp70, and Hsp90 in
Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), Parkinson’s disease (PD),
Huntington’s disease (HD), and multiple sclerosis (MS).

2. Immunomodulatory Function of Extracellular Hsp60, Hsp70, and Hsp90

Hsp60, Hsp70, and Hsp90 interact with the immune system in many ways and thereby
have an impact on neurodegenerative diseases. Extracellular Hsp60, Hsp70, and Hsp90
influence both the innate and the adaptive immune responses. Generally, extracellular Hsp–
receptor interaction involves specific receptors expressed on macrophages and dendritic
and microglia cells, including toll-like receptors (TLRs), scavenger receptors (SR), and other
molecules [16]. For example, Hsp70 and Hsp90 can interact with the SR LOX-1 [17], and
Hsp70 interacts also with multiple members of the SR family [18]. The SR are expressed on
different types of cells and they are involved in the binding and internalization of stress
proteins [18]. Extracellular Hsp60, Hsp70, and Hsp90 can modulate the innate immune re-
sponse, causing the secretion of proinflammatory cytokines by APCs [19]. This interaction
elicits a proinflammatory response that involves mainly nuclear factor-kappa B (NF-kB).
These chaperones are endogenous ligands for TLRs, and by interacting also with CD14
molecules, they can induce the production of cytokines (e.g., interleukin 1 beta (IL-1β), IL-6,
inducible isoform of nitric oxide synthase (iNOS)) [20,21]. TLR4 is a receptor expressed on
the microglia plasma cell membrane with a key role in the generation of immune responses
in the nervous system, responses that are implicated in the development of neurodegen-
erative disorders [22]. For instance, Hsp60 can mediate neuroinflammation through a
MyD88-dependent pathway by interacting with TLR4 on the microglia surface [21] and by
inducing the production of proinflammatory factors via microglial LOX-1 [23]. Intrathecal
injection of Hsp60 lead to neurodegeneration and demyelination by the activation of TLR4-
MyD88 signaling in microglial cells [24]. Hsp70 can interact with microglia, dendritic cells,
and macrophages through TLR2 and TLR4, leading to proinflammatory NF-kB activation
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and its associated pathways [25]. Hsp90 interacts with an extensive list of key mediators in-
volved in pathways regulating inflammatory and immune responses. For example, among
the protein clients of Hsp90, there is the receptor-interacting protein (RIP) kinase, which is
involved in the innate immune response and in the cell-death signaling pathway. [26] RIP,
following TLR4 activation, induces the expression of proinflammatory cytokines by NF-kB
signaling [27] (Figure 1).
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Figure 1. Heat shock protein (Hsp)60, Hsp70, and Hsp90 modulate inflammatory reactions by interacting with factors
involved in the regulation of innate and adaptive immune responses. Stressors can activate the immune system and, in turn,
promote neurodegeneration by inducing Hsps in brain tissue as a mechanism of protection. Extracellular Hsp60, Hsp70,
and Hsp90 interact with receptors present on the surface of cells of the neural tissue’s immune compartment (e.g., microglia)
and elicit pro- or anti-inflammatory responses, depending on the local cellular status. The interaction of extracellular Hsp60,
Hsp70, and Hsp90 with toll-like receptor (TLR)2/4 induces the activation of the nuclear factor-kappa B (NF-kB) inhibitor
protein, which in turn triggers the activation of the NF-kB pathway, promoting an inflammatory response. Hsp60, Hsp70,
and Hsp90 form complexes with antigens (represented by triangles) mediating their presentation via the CD91 cell surface
receptor on antigen-presenting cells (APCs) [28]. Hsp90 plays a proinflammatory role through the interaction with its client
proteins, such as members of the receptor-interacting protein (RIP) kinases and, thereby, activates the NF-kB pathway. Under
physiological conditions, intracellular Hsp90, by blocking heat shock factor (HSF)1, prevents the transcription of Hsp genes,
such as Hsp70, or other genes that code for anti-inflammatory molecules. The pharmacological inhibition of Hsp90 can lead
to upregulation of the transcription of intracellular Hsp70 and of anti-inflammatory molecules by its release. Abbreviations:
MMP, matrix metalloproteinase; TLR, toll-like receptor; IKK, inhibitor of κB kinase; RIP, receptor interaction protein; CD,
cluster of differentiation; lkB, inhibitory subunit I kappa B-alpha; NF-kB, nuclear factor kappa-light-chain-enhancer of
activated B cells; HSF1, heat shock factor 1; P, phosphate; Hsp, heat shock protein; iNOS, inducible isoform of nitric oxide
synthase.

Extracellular Hsp60, Hsp70, and Hsp90 can also help antigen presentation in the
adaptive immune responses by upregulating the expression of major histocompatibility
complex (MHC) molecules and their load [29,30]. Extracellular Hsp70 and Hsp90 com-
plexed with antigens elicit the responses of cluster of differentiation (CD)8+ or CD4+ T
cells by adaptive receptors [16], while Hsp60 by itself can stimulate regulatory CD4+ and
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CD 25+ T cells (Tregs), leading to an immunosuppressive adaptive response without APC
participation [16,31]. In addition, the chaperone–peptide complexes can also recognize
the CD91 receptor of macrophages/dendritic cells and facilitate antigen presentation [28]
(Figure 1). The activation of the adaptive response via Hsp70 might represent a negative
reaction for the cell, but it could be considered advantageous for the development of
immunological memory in preparation for rapid reaction against subsequent insults [32].
In contrast to the proinflammatory function of extracellular Hsp70, intracellular Hsp70
has an anti-inflammatory effect in the brain, especially when overexpressed following
brain damage. Thus, Hsp70 can be anti-inflammatory because it can block the expression
of proinflammatory molecules, such as matrix metalloproteinases [33], and it can also
promote the reduction or the inhibition of NF-kB activity [34,35] (Figure 1). In addition,
intracellular Hsp70 interferes also with genes involved in various neuronal pathways such
as transmission of nerve impulses [36]. Therefore, extracellular Hsp70 could in principle
have anti-inflammatory and neuroprotective effects similar to those of the intracellular
counterpart [37]. Consequently, it is likely that an increase of intracellular Hsp70 will
lead to an increase of functional extracellular Hsp70, contributing to the reduction of the
inflammation associated with neurodegeneration. Pharmacological increase of the Hsp70
level in neurons and microglia by 17-N-allylamino-17-demethoxygeldanamycin (17-AAG)
reduced the hemorrhagic volume in a mouse model of traumatic brain injury [38]. Likewise,
17-AAG inhibition of Hsp90 induced the expression of Hsp70 and Hsp60 [39]. Thus, it may
be said that Hsp70, Hsp60, and Hsp90 promote inflammatory responses and, consequently,
neuronal damage and are implicated in neuroinflammation and neurotoxicity. Cytosolic
Hsp60 has been shown to directly interact with the inhibitor of κB kinase (IKK), promoting
activation of NF-kB-dependent gene transcription by tumor necrosis factor-α (TNFα) [40]
(Figure 1). Hsp90 can induce a proinflammatory response in different ways, for example,
by sequestering the regulator transcriptional factor heat shock factor (HSF)1 and thereby
inhibiting the expression of Hsps (e.g., Hsp70) or activating the NF-kB pathway through
the activation of its protein clients RIP [41] (Figure 1). In view of these results, Hsp60 and
Hsp90 modulators appear as potentially useful agents for controlling inflammation in the
nervous system [42,43]. Currently, numerous compounds have been designed to inhibit
Hsp90 activity, but few have been developed for Hsp60 [15]. Hsp90 inhibitors have been
developed to directly act on the chaperone or on its client proteins. Some inhibitors block
the Hsp90 folding activity linked to adenosine triphosphate (ATP)-dependent conformation
changes [44], while others inactivate its client proteins via proteasomal degradation [45].
For example, geldanamycin induces the degradation of Hsp90 client proteins of the RIP
family with the consequent inhibition of TNF-mediated IkB kinase and NF-kB activa-
tion [41]. Furthermore, Hsp90 forms a complex with HSF1, blocking its translocation to
the nucleus and, thereby, impedes the upregulation of Hsp70 and other anti-inflammatory
molecules [46] (Figure 1). Most of the compounds that inhibit Hsp70 function by targeting
its ATP hydrolysis activity or specific cysteine residues [47].

3. Extracellular Hsp60, Hsp70, and Hsp90 in Acute Nervous System Injury and
Chronic Neurodegenerative Diseases

Neurodegenerative diseases are accompanied by inflammatory responses aimed at
eliminating dead and damaged neuronal cells to restore the compromised area to its normal
status [7]. It should be borne in mind that while short-lived inflammatory responses gener-
ally have a beneficial effect, excessive and persistent release of inflammatory mediators can
be harmful to brain tissue [9]. Moreover, prolonged activation of microglia and astrocytes
could also lead to the alteration of their beneficial functions, which they display under
normal conditions [48]. Therefore, it is not surprising that neuroinflammation contributes
to CNS diseases [49]. Although different in their origins, many neurodegenerative con-
ditions are characterized by shared cellular responses that promote the upregulation of
molecular chaperones as the first line of defense against misfolded, dysfunctional, and
aggregation-prone proteins [50]. There is increasing evidence for the release of Hsp60,
Hsp70, and Hsp90 into the extracellular environment, with functions that are complemen-
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tary or independent of those of their intracellular counterparts. Since these chaperones
lack a secretion signal in their sequences, the mechanisms by which they are released
are poorly understood. In vitro and in vivo studies with Hsp60 have unveiled secretion
pathways, involving lipid rafts and exosomes, which would explain the presence of Hsp60
in extramitochondrial sites such as interstitial space, cellular membrane, and biological
fluids [51]. Similarly, nontraditional secretion mechanisms participate in the membrane
delivery and release of Hsp70, involving lipid rafts [52] and lysosomes [53], in line with
its role as a lysosomal stabilizer [54]. Secretion of Hsp90 via exosomes depends on its
ATPase function and on the open or closed conformational state of the Hsp90 dimer: the
open state promotes Hsp90 release via exosomes, whereas the closed state blocks this
process [55]. Different types of CNS cells, including neurons and glial cells, can release
exosomes with their cargo of specific molecules that could affect the function of acceptor
cells [56]. At the extracellular level, Hsp60 is known to contribute to neuroinflammation
with possible negative implications: this chaperone is highly expressed in activated mi-
croglia, and when released extracellularly, it induces neuroinflammation with neuronal
cell death [57]. For this reason, inhibition of Hsp60 expression and its release represents a
possible therapeutic mechanism applicable to neurodegenerative diseases. The pro- and
anti-inflammatory effects of extracellular Hsp60, Hsp70, and Hsp90 in AD, PD, ALS, HD,
and MS are summarized in Table 1 and discussed in the following paragraphs.

Table 1. Anti- and proinflammatory effects of extracellular Hsp60, Hsp70, and Hsp90 in neurodegen-
erative diseases.

Disease Hsp60 Hsp70 Hsp90

Alzheimer’s disease (AD) Anti- Anti- Pro-
Parkinson’s disease (PD) Pro- Anti- Pro-

Huntington’s disease (HD) Anti- Anti- Pro-
Amyotrophic lateral sclerosis (ALS) Not reported Anti- Not reported

Multiple sclerosis (MS) Pro- Pro- Pro-

3.1. Alzheimer’s Disease

AD is a neurodegenerative disorder in which the amyloid-β peptide (Aβ) accumulates
in extracellular deposits named plaque, whereas neurofibrillary tangles (NFTs) occur
intracellularly with hyperphosphorylated tau [12,58]. Under pro-aggregating conditions
(37 ◦C and stirring), extracellular Hsp60 inhibits the onset of Aβ cross-β-structure formation
that typically accompanies the peptide assembly toward higher ordered structures [59]. The
hypotheses formulated on the possible role of Hsp60 in the formation of protein deposits
are mainly based on its holding activity. For instance, Hsp60 could act as a noncatalytic
inhibitor of polypeptide aggregation by sequestering unfolded monomers via hydrophobic
interactions. However, the stoichiometric ratio of the Aβpeptide/Hsp60 and the limitation
of the methods applied for these measurements put a question mark on the validity of
the results. In fact, the inhibition of amyloid formation appears discontinuous when
passing from a 75:1 to 50:1 molar ratio. Furthermore, the method used, size-exclusion
chromatography, cannot distinguish between Aβ monomers or peptide oligomers of very
low molecular weight, such as dimers or trimers, nor can it discriminate between on-
pathway and off-pathway species. These data suggest that Hsp60 exerts its inhibitory action
only under stress conditions and, in particular, in the presence of other factors such as high
temperature and stirring, which favor the formation of on-pathway seeding species. [59].
Higher levels of Hsp60 were found in lymphocytes isolated from AD subjects [60,61]. αβ
immunization with peptides derived from Hsp60 induced a decrease of cerebral amyloid
burden in a mouse model [62]. Like Hsp60, extracellular Hsp70 also interacts with Aβ

oligomers, blocking their oligomerization into fibers and reducing their toxicity [63]. The
engineered form of secreted Hsp70 (secHsp70) in Drosophila protects against the toxicity
induced by Aβ42 deposits in the extracellular milieu [64]. Exogenous Hsp90 was found
to induce microglial activation and to facilitate phagocytosis and clearance of Aβ directly
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via the TLR4 pathway, but when bound to the Aβ oligomers, it induced the production of
IL-6 and TNF-α [65]. In another work, it was revealed that Hsp90 modulates the formation
of the STIP1 (or Hsp70/Hsp90 organizing protein (HOP))/PrPC complex, which inhibits
the neuroprotective role of STIP1 against amyloid-beta peptide [66]. However, it is still
unclear whether extracellular Hsp70/Hsp90/STIP1 in AD brain exists separately or as a
complex with the Aβ aggregate [66]. All these observations indicate that the understanding
of Hsp90′s role in neurodegeneration deserves further investigation.

3.2. Parkinson’s Disease

PD is characterized by movement disorders and loss of dopaminergic neurons in
the brain’s substantia nigra pars compacta [67,68]. The disease is also characterized by
aggregated α-synuclein that forms nuclear inclusions called Lewy bodies [69]. A study in
yeast cells has shown that null mutations in the Hsp60 gene are linked with defects in the
folding of mitochondrial proteins, with accumulations of misfolded peptides analogous to
the α-synuclein aggregates of PD [70]. Hsp60, Hsp70, and Hsp90 interact with α-synuclein
in the Lewy bodies in PD patients. These inclusions consist not only of α-synuclein aggre-
gates but also contain molecular chaperones which have been sequestered in the aggregates
while attempting to impede or correct protein misfolding and aggregation [71,72]. This
sequestration leads to a deficit of chaperones available for maintaining protein homeostasis,
namely, a chaperonopathy by defect occurs, which contributes to the aggravation of the
pathologic process leading to neurodegeneration. The interaction between Hsp70 and
α-synuclein involves the central hydrophobic region of the pathological protein and the
substrate-binding domain Hsp70 and is crucial for inhibiting assembly before the elonga-
tion stage [73]. The neuroprotective function of overexpressed Hsp70 has been confirmed
in experimental models in vivo [74]. There is less information regarding the protective role
of Hsp90 in the regulation of α-synuclein aggregation. Like in AD, Hsp60, Hsp70, and
Hsp90 contribute to neuronal toxicity in PD. Hsp90 abolishes the binding of α-synuclein
to vesicles and promotes the formation of fibrils [75]. In in vivo and in vitro models of
PD, it was found that Hsp60 expression gradually decreased after 6-hydroxydopamine
(6-OHDA) injection into dopaminergic neurons (DA). This result may be explained by the
release of Hsp60 by the damaged neurons, as suggested by its presence in the cell culture
medium [76]. In PD models and patients, activation of microglia plays a key role in the
release of proinflammatory factors that aggravate the loss of DA neurons [77]. Astrocytes,
which are the predominant glial cell type in the CNS, are also critically affected by stressors.
The expression of Hsp60 on the surface of activated microglia suggests that Hsp60 is
involved in the progression of PD. Extracellular release of Hsp60 from CNS cells under-
going necrotic or apoptotic death activates microglia in a TLR4- and MyD88-dependent
manner [21]. Hsp60 was released from degenerated neurons to activate microglia in a rat
PD model, providing a novel idea for developing a therapeutic strategy to slow or stop PD
progression by preventing the release of Hsp60 or interfering with the interaction between
Hsp60 and microglia [76].

3.3. Amyotrophic Lateral Sclerosis

ALS is a chronic inflammatory demyelinating disease that affects motor neurons and
is characterized by atrophy and paralysis of muscles, with progressive aggravation over
the years [78]. This disease occurs sporadically, but a small percentage is familial with
mutations in specific genes, such as the gene encoding the free-radical-scavenging enzyme
superoxide dismutase-1 (SOD1) [79]. An important aspect of SOD1-associated ALS is the
deposition of SOD1 in large insoluble aggregates in motor neurons. The SOD1 mutated
protein mediates the induction of the disease through the dysregulation of the heat shock
response (HSR)–apoptosis axis [80]. The development of ALS is linked to the formation
of intracellular aggregates of misfolded proteins [78]. Few data are available regarding
the involvement of molecular chaperones in ALS onset. Motor neurons of ALS patients
have an intrinsic deficit in the ability to activate the HSR and, consequently, do not readily
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regulate Hsp expression, as shown, for example, for Hsp70 [81]. It has been observed
that the Hsp70/Hsp40 pair is complexed with the mutant form of the SOD1 protein in
cultured neuronal cells [82]. However, data indicate that the increase of Hsp70 level alone is
not sufficient to ameliorate mutant SOD1-protein-mediated toxicity in mouse models [83].
Histamine is neuroprotective through the HSR in motor neurons and microglia cell cultures,
and in vivo in spinal cord and cortex from symptomatic SOD1-G93A mice [84]. These
results emphasize the relevance of histidine-induced Hsp70 stimulation for preserving
motor function [84]. Further, the intraperitoneal administration of human recombinant
exogenous Hsp70 increased lifespan, delayed the onset of symptoms, preserved locomotor
function, and prolonged motoneuron survival in a mouse model of ALS [85]. Extracellular
Hsp70 stimulates the survival of neurons following injury [86] and overexpressed Hsp70
induces the survival of astrocytes [87]. Under stress, astrocytes increase the release of
exosomes enriched in Hsp70, with positive implications on the survival of nearby neu-
rons [88]. Interestingly, exosomes derived from cancer cells express Hsp70 on their surface,
which allows their interaction with target cells carrying surface Hsp receptors [15]. Hsp70
(DnaJC5/Hsc70 complex) is also believed to be involved in the extracellular release of
proteins associated with neurodegenerative disease as part of its chaperoning functions [89].
Exogenous Hsp70 protects from oxidative damage death in motor neurons through binding
and sequestration of toxic proteins [90].

3.4. Huntington’s Disease

HD is a progressive neurodegenerative disease caused by excess repeats of glutamine
residues, called polyQ repeats, in the huntingtin (Htt) protein, causing protein misfold-
ing [91]. The accumulation of misfolded Htt is associated with cognitive decline and motor
defects [92]. Few studies have investigated the involvement of Hsp60 in HD. For instance,
Hsp60 plays a protective role in HD by inhibiting polyglutamine aggregate formation and
toxicity in vitro [93]. In HD, using confocal microscopy, it was observed that exogenous
Hsp70 helps to reduce the number and size of polyQ inclusions [94]. Under normal condi-
tions, the Htt proteins are under the quality control of the chaperone system, particularly
Hsp90 and Hsp70. Hsp90 co-immunoprecipitates with both mutant and wild-type forms
of Htt, and its inhibition blocks the interaction [95]. Hsp90 preferentially binds the mutant
huntingtin (mHtt) rather than normal Htt proteins and also binds other proteins, such as the
transcriptional repressor RE1-silencing transcription factor (REST) [96]. REST is normally
quiescent in differentiated neurons, but its levels and activity increase as a consequence
of neuronal damage [97]. Under physiological conditions, Htt indirectly regulates REST
nuclear traffic through the formation of a complex that causes REST retention in the cyto-
plasm, whereas under pathological conditions, the binding of mHtt to this complex induces
a conformational change that leads to the release of REST and its subsequent translocation
to the nucleus [96]. A direct effect of this pathological transport of REST is the repression
of neuronal genes containing RE1 sequences, including the brain-derived neurotrophic
factor (BDNF), a survival factor for striatal neurons. Hsp90-specific inhibitors dramatically
reduce Htt stability and REST levels, providing neuroprotective activity [96]. Given the
complexity of the mechanism regulating REST expression and the way by which REST
modulates the expression of its target genes, further studies are needed to understand the
Hsp90–mHtt and Hsp90–REST interactions. Other studies report the involvement of Hsp70
in the pathogenesis of HD. Hsp70 has not only a neuroprotective role as an intracellular
chaperone but it has also important extracellular functions. Extracellular Hsp70 can reach,
for example, the hippocampus, leading to the initiation and propagation of generalized
tonic–clonic seizures [98,99].

3.5. Multiple Sclerosis

MS is a disease of the CNS with autoimmune components that provoke the damage
of myelin around nerves and axons, impairing the transmission of information between
brain and the rest of the body [100]. There is little information on the role that chaperones
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might play in MS. For example, it is not yet established if Hsp60 plays a role in the
immunopathogenesis of MS. Serum and cerebrospinal fluid (CSF) samples with untreated,
relapsing–remitting MS showed antibody signatures targeting epitopes of various proteins,
including Hsp60 [101]. Although extracellular Hsp70 is associated with neuroprotective
functions in AD and PD as it helps in lowering the levels of misfolded proteins, in MS,
it may intensify the immune response. Hsp70 has been found in MS lesions, often in
association with the two major myelin proteins of the myelin sheath, namely, myelin
basic protein (MBP) and proteolipid protein (PLP) [102]. In the experimental autoimmune
encephalomyelitis (EAE) model, Hsp70 promotes an immunological response mediated by
its myelin peptide adjuvant capacity [103]. Moreover, Hsp70 overexpression in vitro leads
to enhanced presentation of MBP in an MHC class-II-dependent manner [104]. It may be
hypothesized that the association of Hsp70 with myelin proteins would be required also
for remyelination during the repair process, and that its deficiency could compromise this
process. This view is supported by findings with autopsy tissue of MS lesions which show
a quantitative reduction of Hsp70 compared with normal brain tissues, a reduction that
parallels the impairment of the remyelination process [105]. Oligodendrocyte precursor
cells (OPCs) are the targets of autoimmune attack in MS, which prevents remyelination.
CSF from MS patients contains antibodies that can specifically recognize Hsp90 molecules
located on OPCs with consequent activation of the complement and significant reduction of
the OPCs [106]. These features indicate that the use of Hsp90 inhibitors could be beneficial
in EAE and probably also in MS.

4. Conclusions

Neuroinflammation and protein misfolding and aggregation are currently recognized
as important players in neurodegenerative diseases. The chaperone system, the main
component of which are molecular chaperones, is critical for maintaining protein home-
ostasis. While protein quality control encompasses the canonical functions of chaperones,
these also have noncanonical functions, and both have an impact on the nervous system
in health and disease. A malfunction of a chaperone may cause disease, a chaperonopa-
thy. Thus, while normal chaperones are typically cytoprotective, abnormal ones can be
pathogenic and contribute to the initiation–progression of neuropathies. This knowledge
opens the road for considering chaperonotherapy as a therapeutic resource in the field
of neurodegenerative diseases. If the chaperones are working in a cytoprotective mode,
namely, promoting protein folding, preventing misfolding and aggregation, and dissolving
reversible aggregates, their levels ought to be enhanced if necessary, for example, when
they become quantitatively insufficient because of excessive demand and/or depletion
because of sequestration in the aggregates. In these chaperonopathies by defect, positive
chaperonotherapy would be appropriate and would involve administration of chaperone
stimulators or the chaperones themselves as proteins or via gene therapy. The same would
apply in other instances of chaperonopathies by defect, for example, when a chaperone is
structurally damaged by mutation or by an aberrant post-translation modification. If, on
the contrary, a chaperone plays an etiologic–pathogenic role and favors development of
neuroinflammation and neurodegeneration, negative chaperonotherapy would be required.
The pathogenic chaperone protein or its gene should be blocked or eliminated. These
are options now open for investigating novel therapeutic approaches targeting neuroin-
flammation and neurodegeneration. For example, arimoclomol, which induces expression
of chaperone genes, is a potential agent to potentiate neuroprotection in ALS [107–109].
Progress in these kinds of therapeutic strategies centering on chaperonotherapy is desper-
ately needed, considering the severity of most neurodegenerative diseases and the current
scarcity of efficacious treatments.
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