58 research outputs found

    Auditory Development between 7 and 11 Years: An Event-Related Potential (ERP) Study

    Get PDF
    Background: There is considerable uncertainty about the time-course of central auditory maturation. On some indices, children appear to have adult-like competence by school age, whereas for other measures development follows a protracted course. Methodology: We studied auditory development using auditory event-related potentials (ERPs) elicited by tones in 105 children on two occasions two years apart. Just over half of the children were 7 years initially and 9 years at follow-up, whereas the remainder were 9 years initially and 11 years at follow-up. We used conventional analysis of peaks in the auditory ERP, independent component analysis, and time-frequency analysis. Principal Findings: We demonstrated maturational changes in the auditory ERP between 7 and 11 years, both using conventional peak measurements, and time-frequency analysis. The developmental trajectory was different for temporal vs. fronto-central electrode sites. Temporal electrode sites showed strong lateralisation of responses and no increase of low-frequency phase-resetting with age, whereas responses recorded from fronto-central electrode sites were not lateralised and showed progressive change with age. Fronto-central vs. temporal electrode sites also mapped onto independent components with differently oriented dipole sources in auditory cortex. A global measure of waveform shape proved to be the most effective method for distinguishing age bands. Conclusions/Significance: The results supported the idea that different cortical regions mature at different rates. The ICC measure is proposed as the best measure of 'auditory ERP age'

    Applying a brain-computer interface to support motor imagery practice in people with stroke for upper limb recovery: A feasibility study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is now sufficient evidence that using a rehabilitation protocol involving motor imagery (MI) practice in conjunction with physical practice (PP) of goal-directed rehabilitation tasks leads to enhanced functional recovery of paralyzed limbs among stroke sufferers. It is however difficult to confirm patient engagement during an MI in the absence of any on-line measure. Fortunately an EEG-based brain-computer interface (BCI) can provide an on-line measure of MI activity as a neurofeedback for the BCI user to help him/her focus better on the MI task. However initial performance of novice BCI users may be quite moderate and may cause frustration. This paper reports a pilot study in which a BCI system is used to provide a computer game-based neurofeedback to stroke participants during the MI part of a protocol.</p> <p>Methods</p> <p>The participants included five chronic hemiplegic stroke sufferers. Participants received up to twelve 30-minute MI practice sessions (in conjunction with PP sessions of the same duration) on 2 days a week for 6 weeks. The BCI neurofeedback performance was evaluated based on the MI task classification accuracy (CA) rate. A set of outcome measures including action research arm test (ARAT) and grip strength (GS), was made use of in assessing the upper limb functional recovery. In addition, since stroke sufferers often experience physical tiredness, which may influence the protocol effectiveness, their fatigue and mood levels were assessed regularly.</p> <p>Results</p> <p>Positive improvement in at least one of the outcome measures was observed in all the participants, while improvements approached a minimal clinically important difference (MCID) for the ARAT. The on-line CA of MI induced sensorimotor rhythm (SMR) modulation patterns in the form of lateralized event-related desynchronization (ERD) and event-related synchronization (ERS) effects, for novice participants was in a moderate range of 60-75% within the limited 12 training sessions. The ERD/ERS change from the first to the last session was statistically significant for only two participants.</p> <p>Conclusions</p> <p>Overall the crucial observation is that the moderate BCI classification performance did not impede the positive rehabilitation trends as quantified with the rehabilitation outcome measures adopted in this study. Therefore it can be concluded that the BCI supported MI is a feasible intervention as part of a post-stroke rehabilitation protocol combining both PP and MI practice of rehabilitation tasks. Although these findings are promising, the scope of the final conclusions is limited by the small sample size and the lack of a control group.</p

    Short-term locomotor adaptation to a robotic ankle exoskeleton does not alter soleus Hoffmann reflex amplitude

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To improve design of robotic lower limb exoskeletons for gait rehabilitation, it is critical to identify neural mechanisms that govern locomotor adaptation to robotic assistance. Previously, we demonstrated soleus muscle recruitment decreased by ~35% when walking with a pneumatically-powered ankle exoskeleton providing plantar flexor torque under soleus proportional myoelectric control. Since a substantial portion of soleus activation during walking results from the stretch reflex, increased reflex inhibition is one potential mechanism for reducing soleus recruitment when walking with exoskeleton assistance. This is clinically relevant because many neurologically impaired populations have hyperactive stretch reflexes and training to reduce the reflexes could lead to substantial improvements in their motor ability. The purpose of this study was to quantify soleus Hoffmann (H-) reflex responses during powered versus unpowered walking.</p> <p>Methods</p> <p>We tested soleus H-reflex responses in neurologically intact subjects (n=8) that had trained walking with the soleus controlled robotic ankle exoskeleton. Soleus H-reflex was tested at the mid and late stance while subjects walked with the exoskeleton on the treadmill at 1.25 m/s, first without power (first unpowered), then with power (powered), and finally without power again (second unpowered). We also collected joint kinematics and electromyography.</p> <p>Results</p> <p>When the robotic plantar flexor torque was provided, subjects walked with lower soleus electromyographic (EMG) activation (27-48%) and had concomitant reductions in H-reflex amplitude (12-24%) compared to the first unpowered condition. The H-reflex amplitude in proportion to the background soleus EMG during powered walking was not significantly different from the two unpowered conditions.</p> <p>Conclusion</p> <p>These findings suggest that the nervous system does not inhibit the soleus H-reflex in response to short-term adaption to exoskeleton assistance. Future studies should determine if the findings also apply to long-term adaption to the exoskeleton.</p

    Facilitating motor imagery-based brain–computer interface for stroke patients using passive movement

    Get PDF
    Motor imagery-based brain–computer interface (MI-BCI) has been proposed as a rehabilitation tool to facilitate motor recovery in stroke. However, the calibration of a BCI system is a time-consuming and fatiguing process for stroke patients, which leaves reduced time for actual therapeutic interaction. Studies have shown that passive movement (PM) (i.e., the execution of a movement by an external agency without any voluntary motions) and motor imagery (MI) (i.e., the mental rehearsal of a movement without any activation of the muscles) induce similar EEG patterns over the motor cortex. Since performing PM is less fatiguing for the patients, this paper investigates the effectiveness of calibrating MI-BCIs from PM for stroke subjects in terms of classification accuracy. For this purpose, a new adaptive algorithm called filter bank data space adaptation (FB-DSA) is proposed. The FB-DSA algorithm linearly transforms the band-pass-filtered MI data such that the distribution difference between the MI and PM data is minimized. The effectiveness of the proposed algorithm is evaluated by an offline study on data collected from 16 healthy subjects and 6 stroke patients. The results show that the proposed FB-DSA algorithm significantly improved the classification accuracies of the PM and MI calibrated models (p < 0.05). According to the obtained classification accuracies, the PM calibrated models that were adapted using the proposed FB-DSA algorithm outperformed the MI calibrated models by an average of 2.3 and 4.5 % for the healthy and stroke subjects respectively. In addition, our results suggest that the disparity between MI and PM could be stronger in the stroke patients compared to the healthy subjects, and there would be thus an increased need to use the proposed FB-DSA algorithm in BCI-based stroke rehabilitation calibrated from PM

    Mutant p53 as a guardian of the cancer cell

    Get PDF
    Forty years of research have established that the p53 tumor suppressor provides a major barrier to neoplastic transformation and tumor progression by its unique ability to act as an extremely sensitive collector of stress inputs, and to coordinate a complex framework of diverse effector pathways and processes that protect cellular homeostasis and genome stability. Missense mutations in the TP53 gene are extremely widespread in human cancers and give rise to mutant p53 proteins that lose tumor suppressive activities, and some of which exert trans-dominant repression over the wild-type counterpart. Cancer cells acquire selective advantages by retaining mutant forms of the protein, which radically subvert the nature of the p53 pathway by promoting invasion, metastasis and chemoresistance. In this review, we consider available evidence suggesting that mutant p53 proteins can favor cancer cell survival and tumor progression by acting as homeostatic factors that sense and protect cancer cells from transformation-related stress stimuli, including DNA lesions, oxidative and proteotoxic stress, metabolic inbalance, interaction with the tumor microenvironment, and the immune system. These activities of mutant p53 may explain cancer cell addiction to this particular oncogene, and their study may disclose tumor vulnerabilities and synthetic lethalities that could be exploited for hitting tumors bearing missense TP53 mutations

    Consensus Paper: Towards a Systems-Level View of Cerebellar Function: the Interplay Between Cerebellum, Basal Ganglia, and Cortex

    Get PDF

    Student Perceptions of a New Course Using Argumentation in Medical Education

    No full text
    Andrew J Foy,1,2,&ast; Kent E Vrana,3 Paul Haidet,1,2 Bernice L Hausman,2,4 Nancy E Adams,5 Ira Ropson,6 Daniel R Wolpaw,1 David Rabago,2,7 Richard B Mailman,3,8 Xuemei Huang3,8– 10,&ast; 1Penn State Department of Medicine, Penn State Milton S Hershey Medical Center and College of Medicine, Hershey, PA, USA; 2Penn State Department of Public Health Science, Penn State Milton S Hershey Medical Center and College of Medicine, Hershey, PA, USA; 3Penn State Department of Pharmacology, Penn State Milton S Hershey Medical Center and College of Medicine, Hershey, PA, USA; 4Penn State Department of Humanities, Penn State Milton S Hershey Medical Center and College of Medicine, Hershey, PA, USA; 5Harrel Library Foundational Sciences, Penn State Milton S Hershey Medical Center and College of Medicine, Hershey, PA, USA; 6Penn State Department of Biochemistry and Molecular Biology, Penn State Milton S Hershey Medical Center and College of Medicine, Hershey, PA, USA; 7Penn State Department of Family and Community Medicine, Penn State Milton S Hershey Medical Center and College of Medicine, Hershey, PA, USA; 8Penn State Department of Neurosurgery, Penn State Milton S Hershey Medical Center and College of Medicine, Hershey, PA, USA; 9Penn State Department of Neurology, Penn State Milton S Hershey Medical Center and College of Medicine, Hershey, PA, USA; 10Penn State Department of Kinesiology, Penn State Milton S Hershey Medical Center and College of Medicine, Hershey, PA, USA&ast;These authors contributed equally to this workCorrespondence: Andrew J Foy, Penn State Milton S Hershey Medical Center and College of Medicine, Penn State Heart and Vascular Institute, Division of Cardiology, Hershey, PA, USA, Email [email protected]: Critical thinking and the ability to engage with others of differing views in a civil manner is essential to the practice of medicine. A new format for medical student education (“Argue-to-Learn”) that uses staged debates followed by small group discussions was introduced into the curriculum of first year medical school at the Penn State College of Medicine. The goal was to create a structured environment for spirited, civil discourse, and to encourage students to think critically about clinically controversial topics. This manuscript describes the development of the program, and presents comparative data on student perceptions of the first two mandatory sessions that focused on the treatment of post-menopausal osteoporosis and on COVID-19 vaccine mandates.Methods: Quantitative results were gathered from standardized post-block student surveys for each session and compared to cumulative results of all other courses included in the learning block. Post-block surveys of students include four session-evaluation questions scored on a 5 point Likert scale. Scores were compared using Student’s t-test. Thematic analysis of qualitative data was performed on a single open-ended response from the same survey.Results: Compared to all other courses in the learning block, scores on each of the four questions were either the same or numerically higher for the Argue-to-Learn sessions, but none reached statistical significance. Two important qualitative themes were identified. First, students enjoyed the format, found it interesting and engaging and want more similar sessions. Second, students appreciated hearing opposing viewpoints and presenting their own viewpoints in a safe and supportive environment.Conclusion: These findings support evidence from educational scholarship outside of medicine showing argumentation as a learning tool is well received by students. Further work is needed to determine whether it improves critical thinking skills and enhances learning in medical education.Keywords: argumentation, critical discourse, collaborative learnin
    • 

    corecore