643 research outputs found

    Linear-T resistivity and change in Fermi surface at the pseudogap critical point of a high-Tc superconductor

    Full text link
    A fundamental question of high-temperature superconductors is the nature of the pseudogap phase which lies between the Mott insulator at zero doping and the Fermi liquid at high doping p. Here we report on the behaviour of charge carriers near the zero-temperature onset of that phase, namely at the critical doping p* where the pseudogap temperature T* goes to zero, accessed by investigating a material in which superconductivity can be fully suppressed by a steady magnetic field. Just below p*, the normal-state resistivity and Hall coefficient of La1.6-xNd0.4SrxCuO4 are found to rise simultaneously as the temperature drops below T*, revealing a change in the Fermi surface with a large associated drop in conductivity. At p*, the resistivity shows a linear temperature dependence as T goes to zero, a typical signature of a quantum critical point. These findings impose new constraints on the mechanisms responsible for inelastic scattering and Fermi surface transformation in theories of the pseudogap phase.Comment: 24 pages, 6 figures. Published in Nature Physics. Online at http://www.nature.com/nphys/journal/vaop/ncurrent/full/nphys1109.htm

    Field-induced quantum fluctuations in the heavy fermion superconductor CeCu2Ge2

    Get PDF
    Quantum-mechanical fluctuations in strongly correlated electron systems cause unconventional phenomena such as non-Fermi liquid behavior, and arguably high temperature superconductivity. Here we report the discovery of a field-tuned quantum critical phenomenon in stoichiometric CeCu2Ge2, a spin density wave ordered heavy fermion metal that exhibits unconventional superconductivity under ~ 10 GPa of applied pressure. Our finding of the associated quantum critical spin fluctuations of the antiferromagnetic spin density wave order, dominating the local fluctuations due to single-site Kondo effect, provide new information about the underlying mechanism that can be important in understanding superconductivity in this novel compound.Comment: Heavy Fermion, Quantum Critical Phenomeno

    Hall-effect evolution across a heavy-fermion quantum critical point

    Full text link
    A quantum critical point (QCP) develops in a material at absolute zero when a new form of order smoothly emerges in its ground state. QCPs are of great current interest because of their singular ability to influence the finite temperature properties of materials. Recently, heavy-fermion metals have played a key role in the study of antiferromagnetic QCPs. To accommodate the heavy electrons, the Fermi surface of the heavy-fermion paramagnet is larger than that of an antiferromagnet. An important unsolved question concerns whether the Fermi surface transformation at the QCP develops gradually, as expected if the magnetism is of spin density wave (SDW) type, or suddenly as expected if the heavy electrons are abruptly localized by magnetism. Here we report measurements of the low-temperature Hall coefficient (RHR_H) - a measure of the Fermi surface volume - in the heavy-fermion metal YbRh2Si2 upon field-tuning it from an antiferromagnetic to a paramagnetic state. RHR_H undergoes an increasingly rapid change near the QCP as the temperature is lowered, extrapolating to a sudden jump in the zero temperature limit. We interpret these results in terms of a collapse of the large Fermi surface and of the heavy-fermion state itself precisely at the QCP.Comment: 20 pages, 3 figures; to appear in Natur

    Cluster‐Based Evaluation of Model Compensating Errors: A Case Study of Cloud Radiative Effect in the Southern Ocean

    Get PDF
    Model evaluation is difficult and generally relies on analysis that can mask compensating errors. This paper defines new metrics, using clusters generated from a machine learning algorithm, to estimate mean and compensating errors in different model runs. As a test case, we investigate the Southern Ocean shortwave radiative bias using clusters derived by applying self‐organizing maps to satellite data. In particular, the effects of changing cloud phase parameterizations in the MetOffice Unified Model are examined. Differences in cluster properties show that the regional radiative biases are substantially different than the global bias, with two distinct regions identified within the Southern Ocean, each with a different signed bias. Changing cloud phase parameterizations can reduce errors at higher latitudes but increase errors at lower latitudes of the Southern Ocean. Ranking the parameterizations often shows a contrast in mean and compensating errors, notably in all cases large compensating errors remain

    Quantum oscillations from Fermi arcs

    Full text link
    When a metal is subjected to strong magnetic field B nearly all measurable quantities exhibit oscillations periodic in 1/B. Such quantum oscillations represent a canonical probe of the defining aspect of a metal, its Fermi surface (FS). In this study we establish a new mechanism for quantum oscillations which requires only finite segments of a FS to exist. Oscillations periodic in 1/B occur if the FS segments are terminated by a pairing gap. Our results reconcile the recent breakthrough experiments showing quantum oscillations in a cuprate superconductor YBCO, with a well-established result of many angle resolved photoemission (ARPES) studies which consistently indicate "Fermi arcs" -- truncated segments of a Fermi surface -- in the normal state of the cuprates.Comment: 8 pages, 5 figure

    Semi-Holographic Fermi Liquids

    Full text link
    We show that the universal physics of recent holographic non-Fermi liquid models is captured by a semi-holographic description, in which a dynamical boundary field is coupled to a strongly coupled conformal sector having a gravity dual. This allows various generalizations, such as a dynamical exponent and lattice and impurity effects. We examine possible relevant deformations, including multi-trace terms and spin-orbit effects. We discuss the matching onto the UV theory of the earlier work, and an alternate description in which the boundary field is integrated out.Comment: 26 pages, 4 figures; v2: typos corrected and report number adde

    Quantum Criticality in Heavy Fermion Metals

    Full text link
    Quantum criticality describes the collective fluctuations of matter undergoing a second-order phase transition at zero temperature. Heavy fermion metals have in recent years emerged as prototypical systems to study quantum critical points. There have been considerable efforts, both experimental and theoretical, which use these magnetic systems to address problems that are central to the broad understanding of strongly correlated quantum matter. Here, we summarize some of the basic issues, including i) the extent to which the quantum criticality in heavy fermion metals goes beyond the standard theory of order-parameter fluctuations, ii) the nature of the Kondo effect in the quantum critical regime, iii) the non-Fermi liquid phenomena that accompany quantum criticality, and iv) the interplay between quantum criticality and unconventional superconductivity.Comment: (v2) 39 pages, 8 figures; shortened per the editorial mandate; to appear in Nature Physics. (v1) 43 pages, 8 figures; Non-technical review article, intended for general readers; the discussion part contains more specialized topic

    Non-Fermi-liquid d-wave metal phase of strongly interacting electrons

    Get PDF
    Developing a theoretical framework for conducting electronic fluids qualitatively distinct from those described by Landau's Fermi-liquid theory is of central importance to many outstanding problems in condensed matter physics. One such problem is that, above the transition temperature and near optimal doping, high-transition-temperature copper-oxide superconductors exhibit `strange metal' behaviour that is inconsistent with being a traditional Landau Fermi liquid. Indeed, a microscopic theory of a strange-metal quantum phase could shed new light on the interesting low-temperature behaviour in the pseudogap regime and on the d-wave superconductor itself. Here we present a theory for a specific example of a strange metal---the 'd-wave metal'. Using variational wavefunctions, gauge theoretic arguments, and ultimately large-scale density matrix renormalization group calculations, we show that this remarkable quantum phase is the ground state of a reasonable microscopic Hamiltonian---the usual t-J model with electron kinetic energy tt and two-spin exchange JJ supplemented with a frustrated electron `ring-exchange' term, which we here examine extensively on the square lattice two-leg ladder. These findings constitute an explicit theoretical example of a genuine non-Fermi-liquid metal existing as the ground state of a realistic model.Comment: 22 pages, 12 figures: 6 pages, 7 figures of main text + 16 pages, 5 figures of Supplementary Information; this is approximately the version published in Nature, minus various subedits in the main tex

    A systematic review of online resources to support patient decision-making for full-thickness rectal prolapse surgery

    Get PDF
    BACKGROUND: The internet is becoming an increasingly popular resource to support patient decision-making outside of the clinical encounter. The quality of online health information is variable and largely unregulated. The aim of this study was to assess the quality of online resources to support patient decision-making for full-thickness rectal prolapse surgery. METHODS: This systematic review was registered on the PROSPERO database (CRD42017058319). Searches were performed on Google and specialist decision aid repositories using a pre-defined search strategy. Sources were analysed according to three measures: (1) their readability using the Flesch-Kincaid Reading Ease score, (2) DISCERN score and (3) International Patient Decision Aids Standards (IPDAS) minimum standards criteria score (IPDASi, v4.0). RESULTS: Overall, 95 sources were from Google and the specialist decision aid repositories. There were 53 duplicates removed, and 18 sources did not meet the pre-defined eligibility criteria, leaving 24 sources included in the full-text analysis. The mean Flesch-Kincaid Reading Ease score was higher than recommended for patient education materials (48.8 ± 15.6, range 25.2-85.3). Overall quality of sources supporting patient decision-making for full-thickness rectal prolapse surgery was poor (median DISCERN score 1/5 ± 1.18, range 1-5). No sources met minimum decision-making standards (median IPDASi score 5/12 ± 2.01, range 1-8). CONCLUSIONS: Currently, easily accessible online health information to support patient decision-making for rectal surgery is of poor quality, difficult to read and does not support shared decision-making. It is recommended that professional bodies and medical professionals seek to develop decision aids to support decision-making for full-thickness rectal prolapse surgery
    corecore