91 research outputs found

    PET-CMR in heart failure - synergistic or redundant imaging?

    Get PDF
    Imaging in heart failure (HF) provides data for diagnosis, prognosis and disease monitoring. Both MRI and nuclear imaging techniques have been successfully used for this purpose in HF. Positron Emission Tomography-Cardiac Magnetic Resonance (PET-CMR) is an example of a new multimodality diagnostic imaging technique with potential applications in HF. The threshold for adopting a new diagnostic tool to clinical practice must necessarily be high, lest they exacerbate costs without improving care. New modalities must demonstrate clinical superiority, or at least equivalence, combined with another important advantage, such as lower cost or improved patient safety. The purpose of this review is to outline the current status of multimodality PET-CMR with regard to HF applications, and determine whether the clinical utility of this new technology justifies the cost

    Hybrid positron detection and optical coherence tomography system: Design, calibration, and experimental validation with rabbit atherosclerotic models

    Get PDF
    We evaluate the performance of our novel hybrid optical coherence tomography (OCT) and scintillating probe, demonstrate simultaneous OCT imaging and scintillating detection, and validate the system using an atherosclerotic rabbit model. Preliminary data obtained from the rabbit model suggest that our prototype positron probe detects local uptake of fluorodeoxyglucose (FDG) labeled with F positron (beta) radionuclide emitter, and the high-uptake regions correlate with sites of injury and extensive atherosclerosis areas. Preliminary data also suggest that coregistered high-resolution OCT images provide imaging of detailed plaque microstructures, which cannot be resolved by positron detection.Electrical and Computer Engineerin

    Utilizing FEM-Software to quantify pre- and post-interventional cardiac reconstruction data based on modelling data sets from surgical ventricular repair therapy (SVRT) and cardiac resynchronisation therapy (CRT)

    Get PDF
    BACKGROUND: Left ventricle (LV) 3D structural data can be easily obtained using standard transesophageal echocardiography (TEE) devices but quantitative pre- and intraoperative volumetry and geometry analysis of the LV is presently not feasible in the cardiac operation room (OR). Finite element method (FEM) modelling is necessary to carry out precise and individual volume analysis and in the future will form the basis for simulation of cardiac interventions. METHOD: A Philips/HP Sonos 5500 ultrasound device stores volume data as time-resolved 4D volume data sets. In this prospective study TomTec LV Analysis TEE(© )Software was used for semi-automatic endocardial border detection, reconstruction, and volume-rendering of the clinical 3D echocardiographic data. With the software FemCoGen(© )a quantification of partial volumes and surface directions of the LV was carried out for two patients data sets. One patient underwent surgical ventricular repair therapy (SVR) and the other a cardiac resynchronisation therapy (CRT). RESULTS: For both patients a detailed volume and surface direction analysis is provided. Partial volumes as well as normal directions to the LV surface are pre- and post-interventionally compared. CONCLUSION: The operation results for both patients are quantified. The quantification shows treatment details for both interventions (e.g. the elimination of the discontinuities for CRT intervention and the segments treated for SVR intervention). The LV quantification is feasible in the cardiac OR and it gives a detailed and immediate quantitative feedback of the quality of the intervention to the medical

    PET imaging of the autonomic myocardial function: methods and interpretation.

    Get PDF
    Cardiac positron emission tomography (PET) is mainly applied in myocardial perfusion and viability detection. Noninvasive imaging of myocardial innervation using PET is a valuable additional methodology in cardiac imaging. Novel methods and different PET ligands have been developed to measure presynaptic and postsynaptic function of the cardiac neuronal system. Obtained PET data can be analysed quantitatively or interpreted qualitatively. Thus far, PET is not a widely used clinical application in autonomic heart imaging; however, due to its technical advantages, the excellent properties of the imaging agents, and the availability of tools for quantification, it deserves a better position in the clinic. From a historical point of view, the focus of PET software packages for image analysis was mainly oncology and neurology driven. Actually, commercially available software for cardiac PET image analysis is still only available for the quantification of myocardial blood flow. Thus far, no commercial software package is available for the interpretation and quantification of PET innervation scans. However, image data quantification and analysis of kinetic data can be performed using adjusted generic tools. This paper gives an overview of different neuronal PET ligands, interpretation and quantification of acquired PET data

    Activated Platelets in Carotid Artery Thrombosis in Mice Can Be Selectively Targeted with a Radiolabeled Single-Chain Antibody

    Get PDF
    BACKGROUND: Activated platelets can be found on the surface of inflamed, rupture-prone and ruptured plaques as well as in intravascular thrombosis. They are key players in thrombosis and atherosclerosis. In this study we describe the construction of a radiolabeled single-chain antibody targeting the LIBS-epitope of activated platelets to selectively depict platelet activation and wall-adherent non-occlusive thrombosis in a mouse model with nuclear imaging using in vitro and ex vivo autoradiography as well as small animal SPECT-CT for in vivo analysis. METHODOLOGY/PRINCIPAL FINDINGS: LIBS as well as an unspecific control single-chain antibody were labeled with (111)Indium ((111)In) via bifunctional DTPA ( = (111)In-LIBS/(111)In-control). Autoradiography after incubation with (111)In-LIBS on activated platelets in vitro (mean 3866 ± 28 DLU/mm(2), 4010 ± 630 DLU/mm(2) and 4520 ± 293 DLU/mm(2)) produced a significantly higher ligand uptake compared to (111)In-control (2101 ± 76 DLU/mm(2), 1181 ± 96 DLU/mm(2) and 1866 ± 246 DLU/mm(2)) indicating a specific binding to activated platelets; P<0.05. Applying these findings to an ex vivo mouse model of carotid artery thrombosis revealed a significant increase in ligand uptake after injection of (111)In-LIBS in the presence of small thrombi compared to the non-injured side, as confirmed by histology (49630 ± 10650 DLU/mm(2) vs. 17390 ± 7470 DLU/mm(2); P<0.05). These findings could also be reproduced in vivo. SPECT-CT analysis of the injured carotid artery with (111)In-LIBS resulted in a significant increase of the target-to-background ratio compared to (111)In-control (1.99 ± 0.36 vs. 1.1 ± 0.24; P < 0.01). CONCLUSIONS/SIGNIFICANCE: Nuclear imaging with (111)In-LIBS allows the detection of platelet activation in vitro and ex vivo with high sensitivity. Using SPECT-CT, wall-adherent activated platelets in carotid arteries could be depicted in vivo. These results encourage further studies elucidating the role of activated platelets in plaque pathology and atherosclerosis and might be of interest for further developments towards clinical application

    Stem cells and other innovative intra-articular therapies for osteoarthritis: what does the future hold?

    Get PDF
    Osteoarthritis (OA), the most common type of arthritis in the world, is associated with suffering due to pain, productivity loss, decreased mobility and quality of life. Systemic therapies available for OA are mostly symptom modifying and have potential gastrointestinal, renal, hepatic, and cardiac side effects. BMC Musculoskeletal Disorders recently published a study showing evidence of reparative effects demonstrated by homing of intra-articularly injected autologous bone marrow stem cells in damaged cartilage in an animal model of OA, along with clinical and radiographic benefit. This finding adds to the growing literature showing the potential benefit of intra-articular (IA) bone marrow stem cells. Other emerging potential IA therapies include IL-1 receptor antagonists, conditioned autologous serum, botulinum toxin, and bone morphogenetic protein-7. For each of these therapies, trial data in humans have been published, but more studies are needed to establish that they are safe and effective. Several additional promising new OA treatments are on the horizon, but challenges remain to finding safe and effective local and systemic therapies for OA
    corecore