19 research outputs found
Storage of lyophilized cultures of Lactobacillus bulgaricus under different relative humidities and atmospheres
The viability of lyophilized cultures of Lactobacillus bulgaricus in skim milk, during storage at different temperatures, relative humidities, and atmospheres was investigated. Survival was greatest at 11% relative humidity and at 5°C. Indirect and direct evidence is presented supporting the hypothesis that membrane damage occurs during storage. Experiments on the lipid composition of the cell membrane demonstrate that changes occur with time that are probably the result of oxidation. A study on the lipid composition of the cell membrane by gas chromatography showed that the unsaturated/saturated fatty acid index changes with time during storage
Optimization of growth media components for polyhydroxyalkanoate (PHA) production from organic acids by Ralstonia eutropha
We employed systematic mixture analysis to determine optimal levels of acetate, propionate, and butyrate for cell growth and polyhydroxyalkanoate (PHA) production by Ralstonia eutropha H16. Butyrate was the preferred acid for robust cell growth and high PHA production. The 3-hydroxyvalerate content in the resulting PHA depended on the proportion of propionate initially present in the growth medium. The proportion of acetate dramatically affected the final pH of the growth medium. A model was constructed using our data that predicts the effects of these acids, individually and in combination, on cell dry weight (CDW), PHA content (%CDW), PHA production, 3HV in the polymer, and final culture pH. Cell growth and PHA production improved approximately 1.5-fold over initial conditions when the proportion of butyrate was increased. Optimization of the phosphate buffer content in medium containing higher amounts of butyrate improved cell growth and PHA production more than 4-fold. The validated organic acid mixture analysis model can be used to optimize R. eutropha culture conditions, in order to meet targets for PHA production and/or polymer HV content. By modifying the growth medium made from treated industrial waste, such as palm oil mill effluent, more PHA can be produced.Malaysia. Ministry of Science, Technology and Innovation (MOSTI
Comparative and Functional Genomics of Rhodococcus opacus PD630 for Biofuels Development
The Actinomycetales bacteria Rhodococcus opacus PD630 and Rhodococcus jostii RHA1 bioconvert a diverse range of organic substrates through lipid biosynthesis into large quantities of energy-rich triacylglycerols (TAGs). To describe the genetic basis of the Rhodococcus oleaginous metabolism, we sequenced and performed comparative analysis of the 9.27 Mb R. opacus PD630 genome. Metabolic-reconstruction assigned 2017 enzymatic reactions to the 8632 R. opacus PD630 genes we identified. Of these, 261 genes were implicated in the R. opacus PD630 TAGs cycle by metabolic reconstruction and gene family analysis. Rhodococcus synthesizes uncommon straight-chain odd-carbon fatty acids in high abundance and stores them as TAGs. We have identified these to be pentadecanoic, heptadecanoic, and cis-heptadecenoic acids. To identify bioconversion pathways, we screened R. opacus PD630, R. jostii RHA1, Ralstonia eutropha H16, and C. glutamicum 13032 for growth on 190 compounds. The results of the catabolic screen, phylogenetic analysis of the TAGs cycle enzymes, and metabolic product characterizations were integrated into a working model of prokaryotic oleaginy.Cambridge-MIT InstituteMassachusetts Institute of Technology. (Seed Grant program)Shell Oil CompanyNational Institute of Allergy and Infectious Diseases (U.S.)United States. National Institutes of HealthNational Institutes of Health. Department of Health and Human Services (Contract No. HHSN272200900006C