288 research outputs found

    The challenges faced in the design, conduct and analysis of surgical randomised controlled trials

    Get PDF
    Randomised evaluations of surgical interventions are rare; some interventions have been widely adopted without rigorous evaluation. Unlike other medical areas, the randomised controlled trial (RCT) design has not become the default study design for the evaluation of surgical interventions. Surgical trials are difficult to successfully undertake and pose particular practical and methodological challenges. However, RCTs have played a role in the assessment of surgical innovations and there is scope and need for greater use. This article will consider the design, conduct and analysis of an RCT of a surgical intervention. The issues will be reviewed under three headings: the timing of the evaluation, defining the research question and trial design issues. Recommendations on the conduct of future surgical RCTs are made. Collaboration between research and surgical communities is needed to address the distinct issues raised by the assessmentof surgical interventions and enable the conduct of appropriate and well-designed trials.The Health Services Research Unit is funded by the Scottish Government Health DirectoratesPeer reviewedPublisher PD

    2, 4-Diamino-6- hydroxy pyrimidine inhibits NSAIDs induced nitrosyl-complex EPR signals and ulcer in rat jejunum

    Get PDF
    BACKGROUND: It has been suggested that one aspect of non-steroidal anti-inflammatory drugs induced intestinal damage is due to either uncoupling of mitochondrial oxidative phosphorylation or inhibition of electron transport. We investigated the latter possibility using electron paramagnetic resonance spectroscopy. RESULTS: Electron paramagnetic studies of NSAIDS on sub-mitochondrial particles revealed that indomethacin, but not with nabumetone, bound to a site near to Complex I and ubiquinone to generate a radical species. Normal rats exhibited prominent [3Fe-4S]ox signals (g ~ 2.01) at 20 K. One hour after indomethacin there was a prominent, intense and broad absorption pattern at (g ~2.07) suggesting, appearance of radical species overlapping [3Fe-4S]ox and was unaffected by pretreatment with 2,4 diamino -6-hydroxy pyrimidine. At 24 hrs, when macroscopic ulcers were seen, there was a new signal due to a nitric oxide radical (NOβ€’). In contrast, nabumetone and 2,4 diamino-6-hydroxy pyrimidine pre-treated animals receiving indomethacin exhibited electron paramagnetic resonance spectra identical to those of controls at 24 hrs and neither was associated with small intestinal ulcers. Indomethacin and 2,4 diamino hydroxy pyrimidine pre-treated rats, but not nabumetone, had increased intestinal permeability. CONCLUSION: The results suggest that the in vivo effects of indomethacin modulate the mitochondrial respiratory chain directly at 1 h and 24 h through formation of nitric oxide. NOβ€’ appears to play an important role in the late pathogenic stages of NSAID enteropathy and may be the site for targeted treatment to reduce their toxicity

    Silencing COI1 in Rice Increases Susceptibility to Chewing Insects and Impairs Inducible Defense

    Get PDF
    The jasmonic acid (JA) pathway plays a key role in plant defense responses against herbivorous insects. CORONATINE INSENSITIVE1 (COI1) is an F-box protein essential for all jasmonate responses. However, the precise defense function of COI1 in monocotyledonous plants, especially in rice (Oryza sativa L.) is largely unknown. We silenced OsCOI1 in rice plants via RNA interference (RNAi) to determine the role of OsCOI1 in rice defense against rice leaf folder (LF) Cnaphalocrocis medinalis, a chewing insect, and brown planthopper (BPH) Nilaparvata lugens, a phloem-feeding insect. In wild-type rice plants (WT), the transcripts of OsCOI1 were strongly and continuously up-regulated by LF infestation and methyl jasmonate (MeJA) treatment, but not by BPH infestation. The abundance of trypsin protease inhibitor (TrypPI), and the enzymatic activities of polyphenol oxidase (PPO) and peroxidase (POD) were enhanced in response to both LF and BPH infestation, but the activity of lipoxygenase (LOX) was only induced by LF. The RNAi lines with repressed expression of OsCOI1 showed reduced resistance against LF, but no change against BPH. Silencing OsCOI1 did not alter LF-induced LOX activity and JA content, but it led to a reduction in the TrypPI content, POD and PPO activity by 62.3%, 48.5% and 27.2%, respectively. In addition, MeJA-induced TrypPI and POD activity were reduced by 57.2% and 48.2% in OsCOI1 RNAi plants. These results suggest that OsCOI1 is an indispensable signaling component, controlling JA-regulated defense against chewing insect (LF) in rice plants, and COI1 is also required for induction of TrypPI, POD and PPO in rice defense response to LF infestation

    A Common Cortical Circuit Mechanism for Perceptual Categorical Discrimination and Veridical Judgment

    Get PDF
    Perception involves two types of decisions about the sensory world: identification of stimulus features as analog quantities, or discrimination of the same stimulus features among a set of discrete alternatives. Veridical judgment and categorical discrimination have traditionally been conceptualized as two distinct computational problems. Here, we found that these two types of decision making can be subserved by a shared cortical circuit mechanism. We used a continuous recurrent network model to simulate two monkey experiments in which subjects were required to make either a two-alternative forced choice or a veridical judgment about the direction of random-dot motion. The model network is endowed with a continuum of bell-shaped population activity patterns, each representing a possible motion direction. Slow recurrent excitation underlies accumulation of sensory evidence, and its interplay with strong recurrent inhibition leads to decision behaviors. The model reproduced the monkey's performance as well as single-neuron activity in the categorical discrimination task. Furthermore, we examined how direction identification is determined by a combination of sensory stimulation and microstimulation. Using a population-vector measure, we found that direction judgments instantiate winner-take-all (with the population vector coinciding with either the coherent motion direction or the electrically elicited motion direction) when two stimuli are far apart, or vector averaging (with the population vector falling between the two directions) when two stimuli are close to each other. Interestingly, for a broad range of intermediate angular distances between the two stimuli, the network displays a mixed strategy in the sense that direction estimates are stochastically produced by winner-take-all on some trials and by vector averaging on the other trials, a model prediction that is experimentally testable. This work thus lends support to a common neurodynamic framework for both veridical judgment and categorical discrimination in perceptual decision making

    Anti-Bacterial Effects of Poly-N-Acetyl-Glucosamine Nanofibers in Cutaneous Wound Healing: Requirement for Akt1

    Get PDF
    Treatment of cutaneous wounds with poly-N-acetyl-glucosamine nanofibers (sNAG) results in increased kinetics of wound closure in diabetic animal models, which is due in part to increased expression of several cytokines, growth factors, and innate immune activation. Defensins are also important for wound healing and anti-microbial activities. Therefore, we tested whether sNAG nanofibers induce defensin expression resulting in bacterial clearance.The role of sNAG in defensin expression was examined using immunofluoresence microscopy, pharmacological inhibition, and shRNA knockdown in vitro. The ability of sNAG treatment to induce defensin expression and bacterial clearance in WT and AKT1-/- mice was carried out using immunofluoresent microscopy and tissue gram staining. Neutralization, using an antibody directed against Ξ²-defensin 3, was utilized to determine if the antimicrobial properties of sNAG are dependent on the induction of defensin expression.sNAG treatment causes increased expression of both Ξ±- and Ξ²-type defensins in endothelial cells and Ξ²-type defensins in keratinocytes. Pharmacological inhibition and shRNA knockdown implicates Akt1 in sNAG-dependent defensin expression in vitro, an activity also shown in an in vivo wound healing model. Importantly, sNAG treatment results in increased kinetics of wound closure in wild type animals. sNAG treatment decreases bacterial infection of cutaneous wounds infected with Staphylococcus aureus in wild type control animals but not in similarly treated Akt1 null animals. Furthermore, sNAG treatment of S. aureus infected wounds show an increased expression of Ξ²-defensin 3 which is required for sNAG-dependent bacterial clearance. Our findings suggest that Akt1 is involved in the regulation of defensin expression and the innate immune response important for bacterial clearance. Moreover, these findings support the use of sNAG nanofibers as a novel method for enhancing wound closure while simultaneously decreasing wound infection

    Mouse Background Strain Profoundly Influences Paneth Cell Function and Intestinal Microbial Composition

    Get PDF
    Increasing evidence supports the central role of Paneth cells in maintaining intestinal host-microbial homeostasis. However, the direct impact of host genotype on Paneth cell function remains unclear. Here, we characterize key differences in Paneth cell function and intestinal microbial composition in two widely utilized, genetically distinct mouse strains (C57BL/6 and 129/SvEv). In doing so, we demonstrate critical influences of host genotype on Paneth cell activity and the enteric microbiota.Paneth cell numbers were determined by flow cytometry. Antimicrobial peptide (AMP) expression was evaluated using quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR), acid urea-polyacrylamide gel electrophoresis, and mass spectrometry. Effects of mouse background on microbial composition were assessed by reciprocal colonization of germ-free mice from both background strains, followed by compositional analysis of resultant gut bacterial communities using terminal restriction fragment length polymorphism analysis and 16 S qPCR. Our results revealed that 129/SvEv mice possessed fewer Paneth cells and a divergent AMP profile relative to C57BL/6 counterparts. Novel 129/SvEv Γ‘-defensin peptides were identified, including Defa2/18v, Defa11, Defa16, and Defa18. Host genotype profoundly affected the global profile of the intestinal microbiota, while both source and host factors were found to influence specific bacterial groups. Interestingly, ileal Ξ±-defensins from 129/SvEv mice displayed attenuated antimicrobial activity against pro-inflammatory E. coli strains, a bacterial species found to be expanded in these animals.This work establishes the important impact of host genotype on Paneth cell function and the composition of the intestinal microbiota. It further identifies specific AMP and microbial alterations in two commonly used inbred mouse strains that have varying susceptibilities to a variety of disorders, ranging from obesity to intestinal inflammation. This will be critical for future studies utilizing these murine backgrounds to study the effects of Paneth cells and the intestinal microbiota on host health and disease

    Human oral viruses are personal, persistent and gender-consistent.

    Get PDF
    Viruses are the most abundant members of the human oral microbiome, yet relatively little is known about their biodiversity in humans. To improve our understanding of the DNA viruses that inhabit the human oral cavity, we examined saliva from a cohort of eight unrelated subjects over a 60-day period. Each subject was examined at 11 time points to characterize longitudinal differences in human oral viruses. Our primary goals were to determine whether oral viruses were specific to individuals and whether viral genotypes persisted over time. We found a subset of homologous viral genotypes across all subjects and time points studied, suggesting that certain genotypes may be ubiquitous among healthy human subjects. We also found significant associations between viral genotypes and individual subjects, indicating that viruses are a highly personalized feature of the healthy human oral microbiome. Many of these oral viruses were not transient members of the oral ecosystem, as demonstrated by the persistence of certain viruses throughout the entire 60-day study period. As has previously been demonstrated for bacteria and fungi, membership in the oral viral community was significantly associated with the sex of each subject. Similar characteristics of personalized, sex-specific microflora could not be identified for oral bacterial communities based on 16S rRNA. Our findings that many viruses are stable and individual-specific members of the oral ecosystem suggest that viruses have an important role in the human oral ecosystem

    Stromal IFN-Ξ³R-Signaling Modulates Goblet Cell Function During Salmonella Typhimurium Infection

    Get PDF
    Enteropathogenic bacteria are a frequent cause of diarrhea worldwide. The mucosal defenses against infection are not completely understood. We have used the streptomycin mouse model for Salmonella Typhimurium diarrhea to analyze the role of interferon gamma receptor (IFN-Ξ³R)-signaling in mucosal defense. IFN-Ξ³ is known to contribute to acute S. Typhimurium diarrhea. We have compared the acute mucosal inflammation in IFN-Ξ³R-/- mice and wild type animals. IFN-Ξ³R-/- mice harbored increased pathogen loads in the mucosal epithelium and the lamina propria. Surprisingly, the epithelium of the IFN-Ξ³R-/- mice did not show the dramatic β€œloss” of mucus-filled goblet cell vacuoles, a hallmark of the wild type mucosal infection. Using bone marrow chimeric mice we established that IFN-Ξ³R-signaling in stromal cells (e.g. goblet cells, enterocytes) controlled mucus excretion/vacuole loss by goblet cells. In contrast, IFN-Ξ³R-signaling in bone marrow-derived cells (e.g. macrophages, DCs, PMNs) was required for restricting pathogen growth in the gut tissue. Thus IFN-Ξ³R-signaling influences different mucosal responses to infection, including not only pathogen restriction in the lamina propria, but, as shown here, also goblet cell function

    Visual Stability and the Motion Aftereffect: A Psychophysical Study Revealing Spatial Updating

    Get PDF
    Eye movements create an ever-changing image of the world on the retina. In particular, frequent saccades call for a compensatory mechanism to transform the changing visual information into a stable percept. To this end, the brain presumably uses internal copies of motor commands. Electrophysiological recordings of visual neurons in the primate lateral intraparietal cortex, the frontal eye fields, and the superior colliculus suggest that the receptive fields (RFs) of special neurons shift towards their post-saccadic positions before the onset of a saccade. However, the perceptual consequences of these shifts remain controversial. We wanted to test in humans whether a remapping of motion adaptation occurs in visual perception
    • …
    corecore