1,223 research outputs found

    A ā€²phenotypic hangover': the predictive adaptive response and multigenerational effects of altered nutrition on the transcriptome of Drosophila melanogaster

    Get PDF
    The Developmental Origins of Health and Disease hypothesis predicts that early-life environmental exposures can be detrimental to later-life health and that mismatch between the pre- and post-natal environment may contribute to the growing non-communicable disease epidemic. Within this is an increasingly recognized role for epigenetic mechanisms; for example, epigenetic modifications can be influenced by nutrition and can alter gene expression in mothers and offspring. Currently, there are few whole-genome transcriptional studies of response to nutritional alteration. Thus, we sought to explore how nutrition affects the expression of genes involved in epigenetic processes in Drosophila melanogaster. We manipulated Drosophila food macronutrient composition at the F0 generation, mismatched F1 offspring back to a standard diet and analysed the transcriptome of the F0-F3 generations by RNA sequencing. At F0, the altered (high-protein, low-carbohydrate) diet increased expression of genes classified as having roles in epigenetic processes, with co-ordinated down-regulation of genes involved in immunity, neurotransmission and neurodevelopment, oxidative stress and metabolism. Upon reversion to standard nutrition, mismatched F1 and F2 generations displayed multigenerational inheritance of altered gene expression. By the F3 generation, gene expression had reverted to F0 (matched) levels. These nutritionally induced gene expression changes demonstrate that dietary alterations can up-regulate epigenetic genes, which may influence the expression of genes with broad biological functions. Furthermore, the multigenerational inheritance of the gene expression changes in F1 and F2 mismatched generations suggests a predictive adaptive response to maternal nutrition, aiding the understanding of the interaction between maternal diet and offspring health, with direct implications for the current non-communicable disease epidemic

    Oilseed rape (Brassica napus) as a resource for farmland insect pollinators: quantifying floral traits in conventional varieties and breeding systems

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Oilseed rape (OSR; Brassica napus L.) is a major crop in temperate regions and provides an important source ofnutrition to many of the yield-enhancing insect ļ¬‚ower visitors that consume ļ¬‚oral nectar. The manipulation ofmechanisms that control various crop plant traits for the beneļ¬t of pollinators has been suggested in the bid toincrease food security, but little is known about inherent ļ¬‚oral trait expression in contemporary OSR varieties orthe breeding systems used in OSR breeding programmes. We studied a range of ļ¬‚oral traits in glasshouse-grown, certiļ¬ed conventional varieties of winter OSR to test for variation among and within breeding systems.We measured 24-h nectar secretion rate, amount, concentration and ratio of nectar sugars per ļ¬‚ower, and sizesand number of ļ¬‚owers produced per plant from 24 varieties of OSR representing open-pollinated (OP), genicmale sterility (GMS) hybrid and cytoplasmic male sterility (CMS) hybrid breeding systems. Sugar concentrationwas consistent among and within the breeding systems; however, GMS hybrids produced more nectar and moresugar per ļ¬‚ower than CMS hybrid or OP varieties. With the exception of ratio of fructose/glucose in OP vari-eties, we found that nectar traits were consistent within all the breeding systems. When scaled, GMS hybridsproduced 1.73 times more nectar resource per plant than OP varieties. Nectar production and amount of nectarsugar in OSR plants were independent of number and size of ļ¬‚owers. Our data show that ļ¬‚oral traits of glass-house-grown OSR differed among breeding systems, suggesting that manipulation and enhancement of nectarrewards for insect ļ¬‚ower visitors, including pollinators, could be included in future OSR breeding programmes.This work was fundedby the BBSRC, including support from an Insect Pollinators Ini-tiative grant awarded to GAW (BB/I000968/1) that was jointlyfunded by the BBSRC, NERC, the Wellcome Trust, Defra, andthe Scottish Government. Support was also received from HighWycombe Beekeepersā€™ Association. Rothamsted Researchreceives strategic funding from the Biotechnology and BiologicalSciences Research Council (BBSRC) of the UK

    Control of Single Molecule Fluorescence Dynamics by Stimulated Emission Depletion

    Get PDF
    The feasibility of manipulating the single molecule absorption-emission cycle using picosecond stimulated emission depletion (STED) is investigated using a stochastic computer simulation. In the simulation the molecule is subjected to repeated excitation and depletion events using time delayed pairs of excitation (PUMP) and depletion (DUMP) pulses derived from a high repetition rate pulsed laser system. The model is used to demonstrate that a significant and even substantial reduction in the occurrence of 'dark states' in the fluorescence emission can be achieved using stimulated emission depletion. Variation in the PUMP-DUMP window allows precise control of the fluorescence yield with substantial increases in the fluorescence intensity observed at early PUMP-DUMP delays

    PREDICT-PD: Identifying risk of Parkinson's disease in the community: methods and baseline results

    Get PDF
    To present methods and baseline results for an online screening tool to identify increased risk for Parkinson's disease (PD) in the UK population

    Flight performance of actively foraging honey bees is reduced by a common pathogen

    Get PDF
    ArticleSudden and severe declines in honey bee (Apis mellifera) colony health in the US and Europe have been attributed, in part, to emergent microbial pathogens, however, the mechanisms behind the impact are unclear. Using roundabout flight mills, we measured the flight distance and duration of actively foraging, healthy-looking honey bees sampled from standard colonies, before quantifying the level of infection by Nosema ceranae and Deformed Wing Virus complex (DWV) for each bee. Neither the presence nor quantity of N. ceranae at low, natural levels of infection had any effect on flight distance or duration, but presence of DWV reduced flight distance by two thirds and duration by one half. Quantity of DWV was shown to have a significant, but weakly positive relation with flight distance and duration, however, the low amount of variation that was accounted for suggests further investigation by dose-response assays is required. We conclude that widespread, naturally occurring levels of infection by DWV weaken the flight ability of honey bees and high levels of within-colony prevalence are likely to reduce efficiency and increase the cost of resource acquisition. Predictions of implications of pathogens on colony health and function should take account of sub-lethal effects on flight performance.This work was funded by the Insect Pollinators Initiative (IPI) grants BB/I000100/1, BB/I000097/1 and BB/I000097/2, C.B. Dennis British Beekeepers' Research Trust and the High Wycombe Beekeepersā€™ Association. The IPI is funded jointly by the BBSRC, Defra, NERC, The Scottish Government and The Wellcome Trust, under the LWEC Partnership. Rothamsted Research is a national institute of bioscience strategically funded by the BBSRC

    Two distinct conformations of factor H regulate discrete complement-binding functions in the fluid phase and at cell surfaces

    Get PDF
    Factor H (FH) is the major regulator of C3b in the alternative pathway of the complement system in immunity. FH comprises 20 short complement regulator (SCR) domains, including eight glycans, and its Y402H polymorphism predisposes those who carry it for age-related macular degeneration. To better understand FH complement binding and self-association, we have studied the solution structures of both the His402 and Tyr402 FH allotypes. Analytical ultracentrifugation revealed that up to 12% of both FH allotypes self-associate, and this was confirmed by small angle X-ray scattering (SAXS), mass spectrometry and surface plasmon resonance analyses. SAXS showed that monomeric FH has a radius of gyration Rg of 7.2-7.8 nm and a length of 25 nm. Starting from known structures for the SCR domains and glycans, the SAXS data were fitted using Monte Carlo methods to determine atomistic structures for monomeric FH. The analysis of 29,715 physically realistic but randomised FH conformations resulted in 100 similar best-fit FH structures for each allotype. Two distinct molecular structures resulted that showed either an extended N-terminal domain arrangement with a folded-back C-terminus, or an extended C-terminus and folded-back N-terminus. These two structures are the most accurate to date for glycosylated full-length FH. To clarify FH functional roles in host protection, crystal structures for the FH complexes with C3b and C3dg revealed that the extended N-terminal conformation accounted for C3b fluid phase regulation, the extended C-terminal conformation accounted for C3d binding, and both conformations accounted for bivalent FH binding to glycosaminoglycans on the target cell surface

    PREDICT-PD: Identifying risk of Parkinson's disease in the community: methods and baseline results

    Get PDF
    This work was supported by Parkinsonā€™s UK (Innovation Grant reference number K-1006: Ā£35 000)
    • ā€¦
    corecore