167 research outputs found

    Distinct genetic architectures and environmental factors associate with host response to the γ2-herpesvirus infections

    Get PDF
    Kaposi’s sarcoma-associated herpesvirus (KSHV) and Epstein-Barr Virus (EBV) establish life-long infections and are associated with malignancies. Striking geographic variation in incidence and the fact that virus alone is insufficient to cause disease, suggests other co-factors are involved. Here we present epidemiological analysis and genome-wide association study (GWAS) in 4365 individuals from an African population cohort, to assess the influence of host genetic and non-genetic factors on virus antibody responses. EBV/KSHV co-infection (OR = 5.71(1.58–7.12)), HIV positivity (OR = 2.22(1.32–3.73)) and living in a more rural area (OR = 1.38(1.01–1.89)) are strongly associated with immunogenicity. GWAS reveals associations with KSHV antibody response in the HLA-B/C region (p = 6.64 × 10−09). For EBV, associations are identified for VCA (rs71542439, p = 1.15 × 10−12). Human leucocyte antigen (HLA) and trans-ancestry fine-mapping substantiate that distinct variants in HLA-DQA1 (p = 5.24 × 10−44) are driving associations for EBNA-1 in Africa. This study highlights complex interactions between KSHV and EBV, in addition to distinct genetic architectures resulting in important differences in pathogenesis and transmission

    Discovery and validation of a three-gene signature to distinguish COVID-19 and other viral infections in emergency infectious disease presentations: a case-control and observational cohort study

    Get PDF
    Summary Background Emergency admissions for infection often lack initial diagnostic certainty. COVID-19 has highlighted a need for novel diagnostic approaches to indicate likelihood of viral infection in a pandemic setting. We aimed to derive and validate a blood transcriptional signature to detect viral infections, including COVID-19, among adults with suspected infection who presented to the emergency department. Methods Individuals (aged ≥18 years) presenting with suspected infection to an emergency department at a major teaching hospital in the UK were prospectively recruited as part of the Bioresource in Adult Infectious Diseases (BioAID) discovery cohort. Whole-blood RNA sequencing was done on samples from participants with subsequently confirmed viral, bacterial, or no infection diagnoses. Differentially expressed host genes that met additional filtering criteria were subjected to feature selection to derive the most parsimonious discriminating signature. We validated the signature via RT-qPCR in a prospective validation cohort of participants who presented to an emergency department with undifferentiated fever, and a second case-control validation cohort of emergency department participants with PCR-positive COVID-19 or bacterial infection. We assessed signature performance by calculating the area under receiver operating characteristic curves (AUROCs), sensitivities, and specificities. Findings A three-gene transcript signature, comprising HERC6, IGF1R, and NAGK, was derived from the discovery cohort of 56 participants with bacterial infections and 27 with viral infections. In the validation cohort of 200 participants, the signature differentiated bacterial from viral infections with an AUROC of 0·976 (95% CI 0·919−1·000), sensitivity of 97·3% (85·8−99·9), and specificity of 100% (63·1−100). The AUROC for C-reactive protein (CRP) was 0·833 (0·694−0·944) and for leukocyte count was 0·938 (0·840−0·986). The signature achieved higher net benefit in decision curve analysis than either CRP or leukocyte count for discriminating viral infections from all other infections. In the second validation analysis, which included SARS-CoV-2-positive participants, the signature discriminated 35 bacterial infections from 34 SARS-CoV-2-positive COVID-19 infections with AUROC of 0·953 (0·893−0·992), sensitivity 88·6%, and specificity of 94·1%. Interpretation This novel three-gene signature discriminates viral infections, including COVID-19, from other emergency infection presentations in adults, outperforming both leukocyte count and CRP, thus potentially providing substantial clinical utility in managing acute presentations with infection. Funding National Institute for Health Research, Medical Research Council, Wellcome Trust, and EU-FP7

    The impact of viral mutations on recognition by SARS-CoV-2 specific T cells

    Get PDF
    We identify amino acid variants within dominant SARS-CoV-2 T cell epitopes by interrogating global sequence data. Several variants within nucleocapsid and ORF3a epitopes have arisen independently in multiple lineages and result in loss of recognition by epitope-specific T cells assessed by IFN-γ and cytotoxic killing assays. Complete loss of T cell responsiveness was seen due to Q213K in the A∗01:01-restricted CD8+ ORF3a epitope FTSDYYQLY207-215; due to P13L, P13S, and P13T in the B∗27:05-restricted CD8+ nucleocapsid epitope QRNAPRITF9-17; and due to T362I and P365S in the A∗03:01/A∗11:01-restricted CD8+ nucleocapsid epitope KTFPPTEPK361-369. CD8+ T cell lines unable to recognize variant epitopes have diverse T cell receptor repertoires. These data demonstrate the potential for T cell evasion and highlight the need for ongoing surveillance for variants capable of escaping T cell as well as humoral immunity

    Validation of Multiplex Serology detecting human herpesviruses 1-5

    Get PDF
    Human herpesviruses (HHV) cause a variety of clinically relevant conditions upon primary infection of typically young and immunocompetent hosts. Both primary infection and reactivation after latency can lead to more severe disease, such as encephalitis, congenital defects and cancer. Infections with HHV are also associated with cardiovascular and neurodegenerative disease. However, most of the associations are based on retrospective casecontrol analyses and well-powered prospective cohort studies are needed for assessing temporality and causality. To enable comprehensive investigations of HHV-related disease etiology in large prospective population-based cohort studies, we developed HHV Multiplex Serology. This methodology represents a low-cost, high-throughput technology that allows simultaneous measurement of specific antibodies against five HHV species: Herpes simplex viruses 1 and 2, Varicella zoster virus, Epstein-Barr virus, and Cytomegalovirus. The newly developed HHV species-specific (‘Monoplex’) assays were validated against established gold-standard reference assays. The specificity and sensitivity of the HHV speciesspecific Monoplex Serology assays ranged from 92.3% to 100.0% (median 97.4%) and 91.8% to 98.7% (median 96.6%), respectively. Concordance with reference assays was very high with kappa values ranging from 0.86 to 0.96 (median kappa 0.93). Multiplexing the Monoplex Serology assays resulted in no loss of performance and allows simultaneous detection of antibodies against the 5 HHV species in a high-throughput manner

    Viral Coinfections in Hospitalized Coronavirus Disease 2019 Patients Recruited to the International Severe Acute Respiratory and Emerging Infections Consortium WHO Clinical Characterisation Protocol UK Study

    Get PDF
    BackgroundWe conducted this study to assess the prevalence of viral coinfection in a well characterized cohort of hospitalized coronavirus disease 2019 (COVID-19) patients and to investigate the impact of coinfection on disease severity.MethodsMultiplex real-time polymerase chain reaction testing for endemic respiratory viruses was performed on upper respiratory tract samples from 1002 patients with COVID-19, aged ResultsA coinfecting virus was detected in 20 (2.0%) participants. Multivariable analysis revealed no significant risk factors for coinfection, although this may be due to rarity of coinfection. Likewise, ordinal logistic regression analysis did not demonstrate a significant association between coinfection and increased disease severity.ConclusionsViral coinfection was rare among hospitalized COVID-19 patients in the United Kingdom during the first 18 months of the pandemic. With unbiased prospective sampling, we found no evidence of an association between viral coinfection and disease severity. Public health interventions disrupted normal seasonal transmission of respiratory viruses; relaxation of these measures mean it will be important to monitor the prevalence and impact of respiratory viral coinfections going forward

    The fatal trajectory of pulmonary COVID-19 is driven by lobular ischemia and fibrotic remodelling

    Get PDF
    BACKGROUND: COVID-19 is characterized by a heterogeneous clinical presentation, ranging from mild symptoms to severe courses of disease. 9-20% of hospitalized patients with severe lung disease die from COVID-19 and a substantial number of survivors develop long-COVID. Our objective was to provide comprehensive insights into the pathophysiology of severe COVID-19 and to identify liquid biomarkers for disease severity and therapy response. METHODS: We studied a total of 85 lungs (n = 31 COVID autopsy samples; n = 7 influenza A autopsy samples; n = 18 interstitial lung disease explants; n = 24 healthy controls) using the highest resolution Synchrotron radiation-based hierarchical phase-contrast tomography, scanning electron microscopy of microvascular corrosion casts, immunohistochemistry, matrix-assisted laser desorption ionization mass spectrometry imaging, and analysis of mRNA expression and biological pathways. Plasma samples from all disease groups were used for liquid biomarker determination using ELISA. The anatomic/molecular data were analyzed as a function of patients' hospitalization time. FINDINGS: The observed patchy/mosaic appearance of COVID-19 in conventional lung imaging resulted from microvascular occlusion and secondary lobular ischemia. The length of hospitalization was associated with increased intussusceptive angiogenesis. This was associated with enhanced angiogenic, and fibrotic gene expression demonstrated by molecular profiling and metabolomic analysis. Increased plasma fibrosis markers correlated with their pulmonary tissue transcript levels and predicted disease severity. Plasma analysis confirmed distinct fibrosis biomarkers (TSP2, GDF15, IGFBP7, Pro-C3) that predicted the fatal trajectory in COVID-19. INTERPRETATION: Pulmonary severe COVID-19 is a consequence of secondary lobular microischemia and fibrotic remodelling, resulting in a distinctive form of fibrotic interstitial lung disease that contributes to long-COVID. FUNDING: This project was made possible by a number of funders. The full list can be found within the Declaration of interests / Acknowledgements section at the end of the manuscript

    Large clones of pre-existing T cells drive early immunity against SARS-COV-2 and LCMV infection

    Get PDF
    T cell responses precede antibody and may provide early control of infection. We analyzed the clonal basis of this rapid response following SARS-COV-2 infection. We applied T cell receptor (TCR) sequencing to define the trajectories of individual T cell clones immediately. In SARS-COV-2 PCR+ individuals, a wave of TCRs strongly but transiently expand, frequently peaking the same week as the first positive PCR test. These expanding TCR CDR3s were enriched for sequences functionally annotated as SARS-COV-2 specific. Epitopes recognized by the expanding TCRs were highly conserved between SARS-COV-2 strains but not with circulating human coronaviruses. Many expanding CDR3s were present at high frequency in pre-pandemic repertoires. Early response TCRs specific for lymphocytic choriomeningitis virus epitopes were also found at high frequency in the preinfection naive repertoire. High-frequency naive precursors may allow the T cell response to respond rapidly during the crucial early phases of acute viral infection

    Malaria is a cause of iron deficiency in African children

    Get PDF
    Malaria and iron deficiency (ID) are common and interrelated public health problems in African children. Observational data suggest that interrupting malaria transmission reduces the prevalence of ID1. To test the hypothesis that malaria might cause ID, we used sickle cell trait (HbAS, rs334), a genetic variant that confers specific protection against malaria2, as an instrumental variable in Mendelian randomization analyses. HbAS was associated with a 30% reduction in ID among children living in malaria-endemic countries in Africa (n = 7,453), but not among individuals living in malaria-free areas (n = 3,818). Genetically predicted malaria risk was associated with an odds ratio of 2.65 for ID per unit increase in the log incidence rate of malaria. This suggests that an intervention that halves the risk of malaria episodes would reduce the prevalence of ID in African children by 49%

    SARS-CoV-2 RNA detected in blood products from patients with COVID-19 is not associated with infectious virus [version 2; peer review: 2 approved]

    Get PDF
    Background: Laboratory diagnosis of SARS-CoV-2 infection (the cause of COVID-19) uses PCR to detect viral RNA (vRNA) in respiratory samples. SARS-CoV-2 RNA has also been detected in other sample types, but there is limited understanding of the clinical or laboratory significance of its detection in blood. Methods: We undertook a systematic literature review to assimilate the evidence for the frequency of vRNA in blood, and to identify associated clinical characteristics. We performed RT-PCR in serum samples from a UK clinical cohort of acute and convalescent COVID-19 cases (n=212), together with convalescent plasma samples collected by NHS Blood and Transplant (NHSBT) (n=462 additional samples). To determine whether PCR-positive blood samples could pose an infection risk, we attempted virus isolation from a subset of RNA-positive samples. Results: We identified 28 relevant studies, reporting SARS-CoV-2 RNA in 0-76% of blood samples; pooled estimate 10% (95%CI 5-18%). Among serum samples from our clinical cohort, 27/212 (12.7%) had SARS-CoV-2 RNA detected by RT-PCR. RNA detection occurred in samples up to day 20 post symptom onset, and was associated with more severe disease (multivariable odds ratio 7.5). Across all samples collected ≥28 days post symptom onset, 0/494 (0%, 95%CI 0-0.7%) had vRNA detected. Among our PCR-positive samples, cycle threshold (ct) values were high (range 33.5-44.8), suggesting low vRNA copy numbers. PCR-positive sera inoculated into cell culture did not produce any cytopathic effect or yield an increase in detectable SARS-CoV-2 RNA. There was a relationship between RT-PCR negativity and the presence of total SARS-CoV-2 antibody (p=0.02). Conclusions: vRNA was detectable at low viral loads in a minority of serum samples collected in acute infection, but was not associated with infectious SARS-CoV-2 (within the limitations of the assays used). This work helps to inform biosafety precautions for handling blood products from patients with current or previous COVID-19
    • …
    corecore