9 research outputs found

    Therapeutic treatment of Zika virus infection using a brain-penetrating antiviral peptide

    No full text
    Zika virus is a mosquito-borne virus that is associated with neurodegenerative diseases, including Guillain-Barre syndrome' and congenital Zika syndrome(2). As Zika virus targets the nervous system, there is an urgent need to develop therapeutic strategies that inhibit Zika virus infection in the brain. Here, we have engineered a brain-penetrating peptide that works against Zika virus and other mosquito-borne viruses. We evaluated the therapeutic efficacy of the peptide in a lethal Zika virus mouse model exhibiting systemic and brain infection. Therapeutic treatment protected against mortality and markedly reduced clinical symptoms, viral loads and neuroinflammation, as well as mitigated microgliosis, neurodegeneration and brain damage. In addition to controlling systemic infection, the peptide crossed the blood-brain barrier to reduce viral loads in the brain and protected against Zikavirus-induced blood-brain barrier injury. Our findings demonstrate how engineering strategies can be applied to develop peptide therapeutics and support the potential of a brain-penetrating peptide to treat neurotropic viral infections

    Broad-spectrum antivirals against viral fusion

    No full text
    © 2015 Macmillan Publishers LimitedEffective antivirals have been developed against specific viruses, such as HIV, Hepatitis C virus and influenza virus. This ‘one bug–one drug’ approach to antiviral drug development can be successful, but it may be inadequate for responding to an increasing diversity of viruses that cause significant diseases in humans. The majority of viral pathogens that cause emerging and re emerging infectious diseases are membrane-enveloped viruses, which require the fusion of viral and cell membranes for virus entry. Therefore, antivirals that target the membrane fusion process represent new paradigms for broad-spectrum antiviral discovery. In this Review, we discuss the mechanisms responsible for the fusion between virus and cell membranes and explore how broad-spectrum antivirals target this process to prevent virus entryWork on broad-spectrum antivirals against fusion was supported by US National Institutes of Health (NIH) grants U01 AI070495 and U01 AI082100, and by a project grant from the Pacific Southwest Regional Center of Excellence for Biodefense and Emerging Infectious Disease (U54 AI065359) (to B.L.). Work on the effect of photosensitization on biomembranes was supported by the Portuguese Fundação para a Ciência e Tecnologia – Ministério da Educação e Ciência (FCT-MEC) project VIH/SAU/0047/2011 (to N.C.S.)

    Role of ASIC1a in Normal and Pathological Synaptic Plasticity

    No full text
    Acid-sensing ion channels (ASICs), members of the degenerin/epithelial Na+ channel superfamily, are broadly distributed in the mammalian nervous system where they play important roles in a variety of physiological processes, including neurotransmission and memory-related behaviors. In the last few years, we and others have investigated the role of ASIC1a in different forms of synaptic plasticity especially in the CA1 area of the hippocampus. This review summarizes the latest research linking ASIC1a to synaptic function either in physiological or pathological conditions. A better understanding of how these channels are regulated in brain circuitries relevant to synaptic plasticity and memory may offer novel targets for pharmacological intervention in neuropsychiatric and neurological disorders
    corecore