67 research outputs found

    Cocaine-induced renal infarction: report of a case and review of the literature

    Get PDF
    BACKGROUND: Cocaine abuse has been known to have detrimental effects on the cardiovascular system. Its toxicity has been associated with myocardial ischemia, cerebrovascular accidents and mesenteric ischemia. The pathophysiology of cocaine-related renal injury is multifactorial and involves renal hemodynamic changes, alterations in glomerular matrix synthesis, degradation and oxidative stress, and possibly induction of renal atherogenesis. Renal infarction as a result of cocaine exposure, however, is rarely reported in the literature. CASE PRESENTATION: A 48 year-old male presented with a four-day history of severe right flank pain following cocaine use. On presentation, he was tachycardic, febrile and had severe right costovertebral angle tenderness. He had significant proteinuria, leukocytosis and elevated serum creatinine and lactate dehydrogenase. Radiographic imaging studies as well as other screening tests for thromboembolic events, hypercoagulability states, collagen vascular diseases and lipid disorders were suggestive of Cocaine-Induced Renal Infarction (CIRI) by exclusion. CONCLUSION: In a patient with a history of cocaine abuse presenting with fevers and flank pain suggestive of urinary tract infection or nephrolithiasis, cocaine-induced renal infarction must be considered in the differential diagnosis. In this article, we discuss the prior reported cases of CIRI and thoroughly review the literature available on this disorder. This is important for several reasons. First, it will allow us to discuss and elaborate on the mechanism of renal injury caused by cocaine. In addition, this review will demonstrate the importance of considering the diagnosis of CIRI in a patient with documented cocaine use and an atypical presentation of acute renal injury. Finally, we will emphasize the need for a consensus on optimal treatment of this disease, for which therapy is not yet standardized

    Cyclin-Dependent Kinase Activity Controls the Onset of the HCMV Lytic Cycle

    Get PDF
    The onset of human cytomegalovirus (HCMV) lytic infection is strictly synchronized with the host cell cycle. Infected G0/G1 cells support viral immediate early (IE) gene expression and proceed to the G1/S boundary where they finally arrest. In contrast, S/G2 cells can be infected but effectively block IE gene expression and this inhibition is not relieved until host cells have divided and reentered G1. During latent infection IE gene expression is also inhibited, and for reactivation to occur this block to IE gene expression must be overcome. It is only poorly understood which viral and/or cellular activities maintain the block to cell cycle or latency-associated viral IE gene repression and whether the two mechanisms may be linked. Here, we show that the block to IE gene expression during S and G2 phase can be overcome by both genotoxic stress and chemical inhibitors of cellular DNA replication, pointing to the involvement of checkpoint-dependent signaling pathways in controlling IE gene repression. Checkpoint-dependent rescue of IE expression strictly requires p53 and in the absence of checkpoint activation is mimicked by proteasomal inhibition in a p53 dependent manner. Requirement for the cyclin dependent kinase (CDK) inhibitor p21 downstream of p53 suggests a pivotal role for CDKs in controlling IE gene repression in S/G2 and treatment of S/G2 cells with the CDK inhibitor roscovitine alleviates IE repression independently of p53. Importantly, CDK inhibiton also overcomes the block to IE expression during quiescent infection of NTera2 (NT2) cells. Thus, a timely block to CDK activity not only secures phase specificity of the cell cycle dependent HCMV IE gene expression program, but in addition plays a hitherto unrecognized role in preventing the establishment of a latent-like state

    GWTC-2.1: Deep extended catalog of compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run

    Get PDF
    The second Gravitational-Wave Transient Catalog, GWTC-2, reported on 39 compact binary coalescences observed by the Advanced LIGO and Advanced Virgo detectors between 1 April 2019 15 ∶ 00 UTC and 1 October 2019 15 ∶ 00 UTC. Here, we present GWTC-2.1, which reports on a deeper list of candidate events observed over the same period. We analyze the final version of the strain data over this period with improved calibration and better subtraction of excess noise, which has been publicly released. We employ three matched-filter search pipelines for candidate identification, and estimate the probability of astrophysical origin for each candidate event. While GWTC-2 used a false alarm rate threshold of 2 per year, we include in GWTC-2.1, 1201 candidates that pass a false alarm rate threshold of 2 per day. We calculate the source properties of a subset of 44 high-significance candidates that have a probability of astrophysical origin greater than 0.5. Of these candidates, 36 have been reported in GWTC-2. We also calculate updated source properties for all binary black hole events previously reported in GWTC-1. If the eight additional high-significance candidates presented here are astrophysical, the mass range of events that are unambiguously identified as binary black holes (both objects ≥ 3 M⊙ ) is increased compared to GWTC-2, with total masses from ∼ 14 M ⊙ for GW190924_021846 to ∼ 182 M⊙ for GW190426_190642. Source properties calculated using our default prior suggest that the primary components of two new candidate events (GW190403_051519 and GW190426_190642) fall in the mass gap predicted by pair-instability supernova theory. We also expand the population of binaries with significantly asymmetric mass ratios reported in GWTC-2 by an additional two events (the mass ratio is less than 0.65 and 0.44 at 90% probability for GW190403_051519 and GW190917_114630 respectively), and find that two of the eight new events have effective inspiral spins χeff > 0 (at 90% credibility), while no binary is consistent with χeff < 0 at the same significance. We provide updated estimates for rates of binary black hole and binary neutron star coalescence in the local Universe

    All-sky search for continuous gravitational waves from isolated neutron stars in the early O3 LIGO data

    Get PDF
    We report on an all-sky search for continuous gravitational waves in the frequency band 20-2000 Hz and with a frequency time derivative in the range of [-1.0,+0.1]×10-8 Hz/s. Such a signal could be produced by a nearby, spinning and slightly nonaxisymmetric isolated neutron star in our Galaxy. This search uses the LIGO data from the first six months of Advanced LIGO's and Advanced Virgo's third observational run, O3. No periodic gravitational wave signals are observed, and 95% confidence-level (C.L.) frequentist upper limits are placed on their strengths. The lowest upper limits on worst-case (linearly polarized) strain amplitude h0 are ∼1.7×10-25 near 200 Hz. For a circularly polarized source (most favorable orientation), the lowest upper limits are ∼6.3×10-26. These strict frequentist upper limits refer to all sky locations and the entire range of frequency derivative values. For a population-averaged ensemble of sky locations and stellar orientations, the lowest 95% C.L. upper limits on the strain amplitude are ∼1.4×10-25. These upper limits improve upon our previously published all-sky results, with the greatest improvement (factor of ∼2) seen at higher frequencies, in part because quantum squeezing has dramatically improved the detector noise level relative to the second observational run, O2. These limits are the most constraining to date over most of the parameter space searched

    All-sky, all-frequency directional search for persistent gravitational waves from Advanced LIGO’s and Advanced Virgo’s first three observing runs

    Get PDF
    We present the first results from an all-sky all-frequency (ASAF) search for an anisotropic stochastic gravitational-wave background using the data from the first three observing runs of the Advanced LIGO and Advanced Virgo detectors. Upper limit maps on broadband anisotropies of a persistent stochastic background were published for all observing runs of the LIGO-Virgo detectors. However, a broadband analysis is likely to miss narrowband signals as the signal-to-noise ratio of a narrowband signal can be significantly reduced when combined with detector output from other frequencies. Data folding and the computationally efficient analysis pipeline, {\tt PyStoch}, enable us to perform the radiometer map-making at every frequency bin. We perform the search at 3072 {\tt{HEALPix}} equal area pixels uniformly tiling the sky and in every frequency bin of width 1/321/32~Hz in the range 20172620-1726~Hz, except for bins that are likely to contain instrumental artefacts and hence are notched. We do not find any statistically significant evidence for the existence of narrowband gravitational-wave signals in the analyzed frequency bins. Therefore, we place 95%95\% confidence upper limits on the gravitational-wave strain for each pixel-frequency pair, the limits are in the range (0.0309.6)×1024(0.030 - 9.6) \times10^{-24}. In addition, we outline a method to identify candidate pixel-frequency pairs that could be followed up by a more sensitive (and potentially computationally expensive) search, e.g., a matched-filtering-based analysis, to look for fainter nearly monochromatic coherent signals. The ASAF analysis is inherently independent of models describing any spectral or spatial distribution of power. We demonstrate that the ASAF results can be appropriately combined over frequencies and sky directions to successfully recover the broadband directional and isotropic results

    Search for gravitational waves associated with gamma-ray bursts detected by Fermi and Swift during the LIGO–Virgo run O3b

    Get PDF
    We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC–2020 March 27 17:00 UTC). We conduct two independent searches: a generic gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these GRBs. A weighted binomial test of the combined results finds no evidence for subthreshold gravitational-wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each GRB. Finally, we constrain the population of low-luminosity short GRBs using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate

    Distinguishing bacterial versus non-bacterial causes of febrile illness - A systematic review of host biomarkers

    No full text
    Background Acute febrile illnesses (AFIs) represent a major disease burden globally; however, the paucity of reliable, rapid point-of-care testing makes their diagnosis difficult. A simple tool for distinguishing bacterial versus non-bacterial infections would radically improve patient management and reduce indiscriminate antibiotic use. Diagnostic tests based on host biomarkers can play an important role here, and a target product profile (TPP) was developed to guide development. Objectives To qualitatively evaluate host biomarkers that can distinguish bacterial from non-bacterial causes of AFI. Data sources The PubMed database was systematically searched for relevant studies published between 2015 and 2019. Study eligibility criteria Studies comparing diagnostic performances of host biomarkers in patients with bacterial versus non-bacterial infections were included. Participants Studies involving human participants and/or human samples were included. Methods We collected information following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. A risk of bias assessment was performed, based on a modified QUADAS-2 (Quality Assessment of Diagnostic Accuracy Score 2). Results We identified 1107 publications. Following screening, 55 publications were included, with 265 biomarker entries. Entries mostly comprised protein biomarkers (58.9%), followed by haematological, RNA, and metabolite biomarkers (15.5%, 8.7%, 12.5%). Sensitivity/specificity was reported for 45.7% of biomarker entries. We assessed a high overall risk of bias for most entries (75.8%). In studies with low/medium risk of bias, four biomarker entries tested in blood samples had sensitivity/specificity of more than 0.90/0.80. Only 12 additional biomarker entries were identified with sensitivity/specificity of more than 0.65/0.65. Conclusions Most recently assessed biomarkers represent well-known biomarkers, e.g. C-reactive protein and procalcitonin. Some protein biomarkers with the highest reported performances include a combined biomarker signature (CRP, IP-10, and TRAIL) and human neutrophil lipocalin (HNL). Few new biomarkers are in the pipeline; however, some RNA signatures show promise. Further high-quality studies are needed to confirm these findings

    Renal malakoplakia presenting as a renal mass in a 55-year-old man: a case report

    No full text
    <p>Abstract</p> <p>Introduction</p> <p>Malakoplakia is an uncommon chronic inflammatory condition that has a gross and microscopic appearance resembling that of xanthogranulomatous pyelonephritis. It is characterized by distinctive Michaelis-Gutmann bodies. Malakoplakia can affect any organ system but genitourinary tract involvement is the most common, particularly in immunocompromised individuals. Very rare cases have been reported to present as a unifocal lesion mimicking a renal tumor.</p> <p>Case presentation</p> <p>We report a case of renal malakoplakia in a 55-year-old Iranian man with a past history of recurrent urinary tract infections who presented with left flank pain. An ultrasound study showed a large solid left renal mass, and he underwent a left radical nephrectomy with a clinical diagnosis of a renal tumor. Pathology slides revealed the diffuse infiltration of sheets of Periodic Acid Schiff-positive histiocytes in his renal parenchyma; these cells showed strong immunoreactivity for CD 68. The final diagnosis was renal malakoplakia.</p> <p>Conclusion</p> <p>Renal malakoplakia must be kept in mind for patients presenting with a renal mass and a history of long-term recurrent renal infections or renal failure. The large, rapidly growing nodules of malakoplakia may mimic renal cell carcinoma in imaging studies. In these cases, a true cut needle biopsy may help the correct diagnosis and prevent unnecessary surgery.</p
    corecore