2,553 research outputs found

    Robust artificial neural networks and outlier detection. Technical report

    Get PDF
    Large outliers break down linear and nonlinear regression models. Robust regression methods allow one to filter out the outliers when building a model. By replacing the traditional least squares criterion with the least trimmed squares criterion, in which half of data is treated as potential outliers, one can fit accurate regression models to strongly contaminated data. High-breakdown methods have become very well established in linear regression, but have started being applied for non-linear regression only recently. In this work, we examine the problem of fitting artificial neural networks to contaminated data using least trimmed squares criterion. We introduce a penalized least trimmed squares criterion which prevents unnecessary removal of valid data. Training of ANNs leads to a challenging non-smooth global optimization problem. We compare the efficiency of several derivative-free optimization methods in solving it, and show that our approach identifies the outliers correctly when ANNs are used for nonlinear regression

    Flavour Physics in the Soft Wall Model

    Get PDF
    We extend the description of flavour that exists in the Randall-Sundrum (RS) model to the soft wall (SW) model in which the IR brane is removed and the Higgs is free to propagate in the bulk. It is demonstrated that, like the RS model, one can generate the hierarchy of fermion masses by localising the fermions at different locations throughout the space. However, there are two significant differences. Firstly the possible fermion masses scale down, from the electroweak scale, less steeply than in the RS model and secondly there now exists a minimum fermion mass for fermions sitting towards the UV brane. With a quadratic Higgs VEV, this minimum mass is about fifteen orders of magnitude lower than the electroweak scale. We derive the gauge propagator and despite the KK masses scaling as mn2nm_n^2\sim n, it is demonstrated that the coefficients of four fermion operators are not divergent at tree level. FCNC's amongst kaons and leptons are considered and compared to calculations in the RS model, with a brane localised Higgs and equivalent levels of tuning. It is found that since the gauge fermion couplings are slightly more universal and the SM fermions typically sit slightly further towards the UV brane, the contributions to observables such as ϵK\epsilon_K and ΔmK\Delta m_K, from the exchange of KK gauge fields, are significantly reduced.Comment: 33 pages, 15 figures, 5 tables; v2: references added; v3: modifications to figures 4,5 and 6. version to appear in JHE

    A habituation account of change detection in same/different judgments

    Get PDF
    We investigated the basis of change detection in a short-term priming task. In two experiments, participants were asked to indicate whether or not a target word was the same as a previously presented cue. Data from an experiment measuring magnetoencephalography failed to find different patterns for “same” and “different” responses, consistent with the claim that both arise from a common neural source, with response magnitude defining the difference between immediate novelty versus familiarity. In a behavioral experiment, we tested and confirmed the predictions of a habituation account of these judgments by comparing conditions in which the target, the cue, or neither was primed by its presentation in the previous trial. As predicted, cue-primed trials had faster response times, and target-primed trials had slower response times relative to the neither-primed baseline. These results were obtained irrespective of response repetition and stimulus–response contingencies. The behavioral and brain activity data support the view that detection of change drives performance in these tasks and that the underlying mechanism is neuronal habituation

    An improved observable for the forward-backward asymmetry in B -> K* l+ l- and Bs -> phi l+ l-

    Full text link
    We study the decay B -> K* l+ l- in the QCD factorization approach and propose a new integrated observable whose dependence on the form factors is almost negligible, consequently the non--perturbative error is significantly reduced and indeed its overall theoretical error is dominated by perturbative scale uncertainties. The new observable we propose is the ratio between the integrated forward--backward asymmetry in the [4,6] GeV^2 and [1,4] GeV^2 dilepton invariant mass bins. This new observable is particularly interesting because, when compared to the location of the zero of the FBA spectrum, it is experimentally easier to measure and its theoretical uncertainties are almost as small; moreover it displays a very strong dependence on the phase of the Wilson coefficient C_10 that is otherwise only accessible through complicated CP violating asymmetries. We illustrate the new physics sensitivity of this observable within the context of few extensions of the Standard Model, namely the SM with four generations, an MSSM with non--vanishing source of flavor changing neutral currents in the down squark sector and a Z' model with tree level flavor changing couplings.Comment: 19 pages, 7 figure

    Additive Manufacturing of Biomechanically Tailored Meshes for Compliant Wearable and Implantable Devices

    Get PDF
    Additive manufacturing (AM) of medical devices such as orthopedic implants and hearing aids is highly attractive because of AM’s potential to match the complex form and mechanics of individual human bodies. Externally worn and implantable tissue-support devices, such as ankle or knee braces, and hernia repair mesh, offer a new opportunity for AM to mimic tissue-like mechanics and improve both patient outcomes and comfort. Here, it is demonstrated how explicit programming of the toolpath in an extrusion AM process can enable new, flexible mesh materials having digitally tailored mechanical properties and geometry. Meshes are fabricated by extrusion of thermoplastics, optionally with continuous fiber reinforcement, using a continuous toolpath that tailors the elasticity of unit cells of the mesh via incorporation of slack and modulation of filament-filament bonding. It is shown how the tensile mesh mechanics can be engineered to match the nonlinear response of muscle, incorporate printed mesh into an ankle brace with directionally specific inversion stiffness, and present further concepts for tailoring their 3D geometry for medical applications.Financial support was provided by a National Science Foundation Science, Engineering, and Education for Sustainability postdoctoral fellowship (Award number: 1415129) to S.W.P.; a Samsung Scholarship to J.L; the School of Engineering and Sciences from Tecnologico de Monterrey to R.R.; the Manufacturing Demonstration Facility, Oak Ridge National Laboratory, the Department of Energy, UT-Batelle, Oak Ridge Associated Universities, the DOE’s Advanced Manufacturing Office to G.D.; the German Academic Exchange Service (DAAD) to C.M.; and the Eric P. and Evelyn E. Newman Fund and NSF-CRCNS-1724135 to N.H

    A Special Homotopy Continuation Method For A Class of Polynomial Systems

    Full text link
    A special homotopy continuation method, as a combination of the polyhedral homotopy and the linear product homotopy, is proposed for computing all the isolated solutions to a special class of polynomial systems. The root number bound of this method is between the total degree bound and the mixed volume bound and can be easily computed. The new algorithm has been implemented as a program called LPH using C++. Our experiments show its efficiency compared to the polyhedral or other homotopies on such systems. As an application, the algorithm can be used to find witness points on each connected component of a real variety

    5D UED: Flat and Flavorless

    Full text link
    5D UED is not automatically minimally flavor violating. This is due to flavor asymmetric counter-terms required on the branes. Additionally, there are likely to be higher dimensional operators which directly contribute to flavor observables. We document a mostly unsuccessful attempt at utilizing localization in a flat extra dimension to resolve these flavor constraints while maintaining KK-parity as a good quantum number. It is unsuccessful insofar as we seem to be forced to add brane operators in such a way as to precisely mimic the effects of a double throat warped extra dimension. In the course of our efforts, we encounter and present solutions to a problem common to many extra dimensional models in which fields are "doubly localized:" ultra-light modes. Under scrutiny, this issue seems tied to an intrinsic tension between maintaining Kaluza-Klein parity and resolving mass hierarchies via localization.Comment: 27 pages, 6 figure

    Exploring New Physics in the C7-C7' plane

    Get PDF
    The Wilson coefficient C7 governing the radiative electromagnetic decays of B meson has been calculated to a very high accuracy in the Standard Model, but experimental bounds on either the magnitude or the sign of C7 are often model-dependent. In the present paper, we attempt at constraining both the magnitude and sign of C7 using a systematic approach. We consider already measured observables like the branching ratios of B \rightarrow Xs mu+ mu- and B \rightarrow Xs gamma, the isospin and CP asymmetries in B \rightarrow K* gamma, as well as AFB and FL in B \rightarrow K*l+l-. We also discuss the transverse observable AT2 which, once measured, may help to disentangle some of the scenarios considered. We explore the constraints on C7, C9, C10 as well as their chirality-flipped counterparts. Within our framework, we find that we need to extend the constraints up to 1.6 sigma to allow for the "flipped-sign solution" of C7. The SM solution for C7 exhibits a very mild tension if New Physics is allowed in dipole operators only. We provide semi-numerical expressions for all these observables as functions of the relevant Wilson coefficients at the low scale.Comment: 54 pages, 16 figures, 15 tables. Normalization factor introduced for the integrated AFB and FL in Sec.2.5 (Eq.2.35-2.38). Conclusions unchanged. Not updated in JHE

    Model-independent constraints on new physics in b --> s transitions

    Get PDF
    We provide a comprehensive model-independent analysis of rare decays involving the b --> s transition to put constraints on dimension-six Delta(F)=1 effective operators. The constraints are derived from all the available up-to-date experimental data from the B-factories, CDF and LHCb. The implications and future prospects for observables in b --> s l+l- and b --> s nu nu transitions in view of improved measurements are also investigated. The present work updates and generalises previous studies providing, at the same time, a useful tool to test the flavour structure of any theory beyond the SM.Comment: 1+39 pages, 12 figures, 3 tables. v2: minor modifications, typos corrected, references added, version to be published in JHE

    Measurements in two bases are sufficient for certifying high-dimensional entanglement

    Full text link
    High-dimensional encoding of quantum information provides a promising method of transcending current limitations in quantum communication. One of the central challenges in the pursuit of such an approach is the certification of high-dimensional entanglement. In particular, it is desirable to do so without resorting to inefficient full state tomography. Here, we show how carefully constructed measurements in two bases (one of which is not orthonormal) can be used to faithfully and efficiently certify bipartite high-dimensional states and their entanglement for any physical platform. To showcase the practicality of this approach under realistic conditions, we put it to the test for photons entangled in their orbital angular momentum. In our experimental setup, we are able to verify 9-dimensional entanglement for a pair of photons on a 11-dimensional subspace each, at present the highest amount certified without any assumptions on the state.Comment: 11+14 pages, 2+7 figure
    corecore