
Derivative free optimization and neural networks for
robust regression

Gleb Beliakov1, Andrei Kelarev1 and John Yearwood2

1School of Information Technology
Deakin University, 221 Burwood Hwy, Burwood 3125, Australia

{gleb,andrei}@deakin.edu.au

2School of Science, Information Technology and Engineering
University of Ballarat, P.O. Box 663, Ballarat, Victoria 3353, Australia

j.yearwood@ballarat.edu.au

Abstract

Large outliers break down linear and nonlinear regression models. Robust regres-
sion methods allow one to filter out the outliers when building a model. By replacing
the traditional least squares criterion with the least trimmed squares criterion, in which
half of data is treated as potential outliers, one can fit accurate regression models to
strongly contaminated data. High-breakdown methods have become very well estab-
lished in linear regression, but have started being applied for non-linear regression only
recently. In this work, we examine the problem of fitting artificial neural networks
to contaminated data using least trimmed squares criterion. We introduce a penal-
ized least trimmed squares criterion which prevents unnecessary removal of valid data.
Training of ANNs leads to a challenging non-smooth global optimization problem. We
compare the efficiency of several derivative-free optimization methods in solving it,
and show that our approach identifies the outliers correctly when ANNs are used for
nonlinear regression.

Keywords Global optimization; Non-smooth optimization; Robust regression; Neural net-

works, Least trimmed squares.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Federation ResearchOnline

https://core.ac.uk/display/213012567?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

We consider the problem of function approximation with artificial neural networks (ANNs).
This generic task has many applications in science and engineering, such as signal processing,
pattern recognition, and control. The goal is to model an unknown nonlinear function based
on observed input-output pairs. ANNs are universal function approximators [20], and usually
they deliver good performance in applications.

Error-free data are rarely provided in applications. First, the data are usually contam-
inated by noise, which reflects inaccuracies in observations and stochastic nature of the
underlying process. ANNs and other function approximators deal with such noise quite ef-
ficiently, by minimising the sum of squared differences between the observed and predicted
values, or a more sophisticated fitting criterion, such as Huber-type functions, which are the
basis of M-estimators in statistics [21].

The second type of data contamination has to do with either gross observation errors (e.g.,
equipment malfunction, or notorious replacing missing values with zeroes, wrong decimal
points and other blunders), or the data reflecting a mixture of different phenomena. These
data, which usually take aberrant values, are called outliers. It has been noted that typically
the occurrence of outliers in routine data ranges from 1% to 10%. When fitting a model to
the data, outliers need to be identified and eliminated, or, alternatively, examined closely, as
they may be of the main interest themselves. Notable examples are intrusion and cyberattack
detection, detection of harmful chemicals and cancerous cells.

The methods of function approximation based on the least squares (or, more generally,
maximum likelihood principle) are not robust against outliers. In fact just one aberrant
value can make the model’s bias infinite (it is said that the method breaks down). This
phenomenon is well known in linear regression [31, 48], where a number of robust high-
breakdown methods have been developed. The popular methods of least median of squares
(LMS) and least trimmed squares (LTS) [47] discard half of the data as potential outliers and
fit a model to the remaining half. These methods determine numerically which half of the
data should be discarded in order to obtain the smallest value of the respective objectives.
That way, up to half of the data can be outliers but they do not break down the method.
It is said that their (asymptotic) breakdown point is 1

2
. The outliers themselves can be

identified by their large residuals, something that cannot be achieved when using the least
squares estimators, or maximum likelihood estimators (called M-estimators), because of the
masking effect (i.e., the outliers affect the fitted model so much that their residuals do not
stand out).

Much less work has been devoted to non-linear high-breakdown regression. There are
very few papers dealing with the LTS method applied to ANNs, see for example, [58]. More
recently, Liano [27] used M-estimators to study the mechanism by which outliers affect the
resulting ANNs. Chen and et. al [9] also used M-estimators as a robust estimator in the
presence of outliers. The Least Trimmed Squares estimator was discussed in [24, 50, 51]. A
robust LTS backpropagation algorithm based on simulated annealing was considered in [51].

It is known that fitting the LTS or LMS criterion is an NP-hard problem even in linear

2

regression. The objective has a large number of local minima and is non-smooth. The
problem becomes even more complicated for ANNs, because

(a) the dimensionality of the problem increases even further with the number of hidden
neurons used, and

(b) the ANN training is an NP-hard problem even when using the traditional least squares
criterion.

Training ANNs with LTS or LMS criterion is very challenging because of a much higher
number of local minima as well as non-applicability of the traditional fast backpropagation
algorithm because of non-smoothness of the objective.

In this article we advance the methods for robust fitting of ANNs using LTS and related
fitting criteria. Our first contribution is to design a hybrid algorithm, which combines a
derivative free optimisation method for initial training of ANN, removal of the detected
outliers, and then fine tuning of ANN weights using clean data and backpropagation. The
second contribution is the design of an improved fitting criterion, called Penalised CLTS
(PCLTS), which prevents unnecessary removal of valid data. The LTS and LMS criteria
have this undesirable effect, illustrated in our experiments. The PCLTS criterion prevents
unnecessary removals by imposing a penalty on removal of every datum.

This article is structured as follows. In Section 2, we introduce the problem of robust
regression, recall the definitions and the main features of several existing high-breakdown
estimators, and discuss the associated optimization problem. In Section 3 we introduce the
PCLTS criterion for ANN fitting. In Section 4, we outline the existing approaches to solution
of the related optimization problem and present three new methods we use in this study.
Section 5 is devoted to a comparative numerical study of the optimization methods using
several data sets. Section 6 concludes the article.

2 High-breakdown robust estimators

In this section, we briefly introduce a statistical problem which is in the origin of the non-
smooth global optimization problem treated in this paper. We start the discussion with
high-breakdown linear regression, which will be followed by nonlinear regression.

2.1 Robust linear regression

Consider the standard multiple linear regression model

yi = xi1θ1 + . . .+ xipθp + εi, for i = 1, . . . , n, (1)

where xip = 1 for regression with an intercept term. Here {xij} = X ∈ Rn×p is the matrix of
explanatory variables of full column rank, and ε is a n-vector of independent and identically
distributed random errors with zero mean and (unknown) variance σ2. The goal is to deter-
mine the vector of unknown parameters θ ∈ Rp. The goodness of fit is expressed in terms of

3

the residuals ri(θ) = θtxi−yi, namely the sum
∑n

i=1 r
2
i for the ordinary least squares (OLS)

and
∑n

i=1 |ri| for the least absolute deviations (LAD) methods.
As we mentioned in the introduction, the OLS and LAD are very sensitive to large outliers

in the data. Just one grossly atypical datum can affect the model. A breakdown point of
a regression estimator is the smallest proportion of contaminated data that can make the
estimator’s bias arbitrarily large (see [17], [48], p.10). The breakdown point of the OLS and
LAD methods tends to zero as 1

n
with the increasing sample size n, and is said to be 0%.

To overcome the lack of robustness of OLS and LAD estimators, Rousseeuw [47] intro-
duced the least median of squares and least trimmed squares estimators. The methods of
the least trimmed absolute deviations (LTA) and the maximum trimmed likelihood (MTL)
were advocated in [15, 18, 57]. These methods are robust to leverage points, and allow up
to a half of the data to be contaminated without affecting the regression model. Atypical
data are then detected by their large residuals. For recent accounts of the state-of-the-art
in high-breakdown robust regression, see [31,48].

Essentially, the LTS, LTA and MTL methods work in the following way. Half of the
sample is discarded, and a regression model is built using the other half. The sum of the
residuals is then evaluated. The objective is to find the optimal partition of the data into
two halves, so that the sum of the (squared or absolute) residuals is the smallest. This is a
combinatorial formulation of the problem. Evidently the solution is feasible only for small
data sets.

The same problem can be formulated as a continuous non-smooth optimization problem:

Minimize F (θ) =
h∑
i=1

(r(i)(θ))
2, (2)

where the residuals are ordered in the increasing order |r(1)| ≤ |r(2)| ≤ . . . ≤ |r(n)|, and
h = b(n + p + 1)/2c, where b·c is the floor function. The variables in this model are the
regression coefficients θ. For small to moderate dimension but large data sets this model
offers significant numerical advantages. It is the basis of fast heuristic algorithms in high-
breakdown regression [49]. Several recent methods based on this formulation, including
evolutionary and semidefinite programming, were presented in [3, 8, 35, 36,52].

The four methods mentioned above achieve the highest attainable asymptotic breakdown
point of 1/2, which means that up to a half of the data can be contaminated without affecting
the estimator. Consequently, the outliers can be easily detected by their large residuals, and
either eliminated, or alternatively, examined more closely in the cases where the outliers
themselves are of the main interest.

It is shown in [6] that computation of the high-breakdown estimators is an NP-hard
problem. Indeed, the objective F in the methods mentioned above has multiple local minima.
Consider, for instance, the LTS estimator. The problem (2) can be written as

min
θ

(
min
π

h∑
i=1

r2π(i)(θ)

)
,

4

where π is a permutation of the vector (1, 2, . . . , n). Subsequently we write it as

min
π

(
min
θ

h∑
i=1

r2π(i)(θ)

)
.

The inner optimization problem is convex, and has a unique minimum (potentially, multiple
minimizers). Then problem (2) will potentially have as many as

(
n
h

)
local minima (the

number of permutations π which result in distinct sums for any fixed θ).
In addition to determining the breakdown point of an estimator, it is also essential to

ivestigate its efficiency. It is customary to evaluate the efficiency by comparing it to that
of the OLS estimator. A fully efficient estimator should deliver the same accuracy as the
maximum likelihood based estimator (which is OLS when the noise is Gaussian) when the
data set contains no outliers. The relative efficiency of the LMS, LTS and LTA methods for
normally distributed data is low [31,48]. However, fully efficient high-breakdown estimators
exist. The reweighted least squares estimator (REWLSE) is one such estimator presented
in [14].

To improve the efficiency, while preserving the breakdown point, Gervini and Yohai [14]
use a two-step process: an initial high-breakdown estimator (like LMS, or LTS) provides a
robust estimate of scale s used to re-weigh the data. The weights are given by the formula

wi =

{
1 if |ri| < tn,
0 otherwise,

(3)

where tn is the adaptive cutoff value beyond which the sample proportion of absolute
residuals exceeds the theoretical proportion. The weights wi given by (3) effectively re-
move all outliers. The adaptive estimate REWLSE is then computed as a weighted OLS:
θ = (X tWX)−1X tWY with W = diag(w1, . . . , wn).

The two-step process in REWLSE computes fully efficient estimators when the data
are normally distributed, as no data are unnecessarily removed. REWLSE inherits the
breakdown point of the initial estimator and combines it with full efficiency of the final LS
estimator.

2.2 Nonlinear robust regression

We now consider a nonlinear regression model

yi = f(xi; θ) + εi, for i = 1, . . . , n, (4)

where f is an arbitrary (nonlinear) function, θ is a set of parameters (it may vary depending
on the particular specification of a class of regression models), xi ∈ Rp−1 are the fixed data
points or inputs and yi are the outputs. Regression neural networks give us examples of such
functions. For instance, each neural network with one hidden layer and one output defines
a function of the form

f(x, θ) =

mh∑
j=1

θhj · g

(
p∑

k=1

θijkxk

)
,

5

where θh ∈ Rmh (and θi ∈ Rmh×p) are the hidden (respectively, input) layer weights, mh is
the size of the hidden layer, p is the number of inputs plus one (the bias term), and g is a
transfer function. Altogether, f has (p+ 1)×mh parameters represented by θ = (θh, θi).

For regression ANNs, the OLS fitting criterion is typically used, i.e., the weights are
found by minimising

F (θ) =
n∑
i=1

(ri(θ))
2, (5)

with the residuals ri(θ) = f(xi; θ) − yi. Backpropagation is usually the algorithm of choice
for minimising F , although Levenberg Marquardt is also used [16, 32]. In both cases, a
randomly chosen initial weighting vector θ0 is needed, and often both methods are combined
with random start heuristic, because F has multiple local minima. The number of local
minima of F grows exponentially with the length of θ.

As in the case of linear regression, the OLS criterion is not robust against outliers. This
can be clearly demonstrated by replacing one or more data with very large or very small
values, see examples in Section 5. Unlike in the case of linear regression, where the whole
regression model is shifted towards the abnormal value, models provided by regression ANNs
exhibit wild oscillations at the abnormal datum, which significantly affect the rest of the data.

There have been attempts to use more robust Huber-type criterion (which is used in
M-estimators) [9, 27]. Here the squared residuals in (5) are replaced with h(|ri|), where h
is an non-negative monotone increasing function with h(0) = 0, whose growth decreases
with the size of the argument. This way very large residuals have a limited effect on the
objective F . The objective itself becomes more complex, as even in linear regression, when
ri depend on θ linearly, F is the sum of quasi-convex terms, which is not quasi-convex itself.
Huber-type functions h also have another problem. The scale of their argument has to be
either determined a priori, or be data-dependent. In the former case the estimator is not
scale invariant, whereas in the latter case a robust estimation of the scale parameter s is
needed. When estimation of the scale s is not robust (for example, taking s as the mean of

the absolute residuals and evaluating h(|ri|
s

)), the M-estimator will not be robust.
The LTS criterion (2) was also used in ANN training [50]. It allows one to discard up

to half of the data as potential outliers, and therefore make ANN model robust against
largely abnormal data. Unlike in the case of linear regression, however, the LTS criterion
may also discard good data together with the outliers. When there are no outliers in the
data, it treats good data as outliers, and builds wrong regression models. We illustrate this
on several examples in Section 5.

3 A new high-breakdown criterion for ANNs

In this section, we introduce a new fitting criterion, which has allowed us to overcome the
deficiencies of the M-type and LTS criteria mentioned in the previous section. We propose
this new criterion, called Penalised CLTS (PCLTS), with the following aims in mind

(A1) We need to discard data with unusually large residuals as outliers.

6

(A2) We need to penalise unnecessary removal of data.

(A3) We need to keep all data with residuals which are comparatively small.

(A4) For the purposes of optimising the criterion, we need it to be based on a Lipschitz-
continuous function.

PCLTS is based on the CLTS criterion [3], in which the data are discarded if their absolute
residuals are C times larger than the median residual. The choice of C = 1 corresponds to
the LTS criterion, but values of C larger than one lead to better efficiency of the estimator
compared to OLS in the absence of outliers.

We propose the following objective, which addresses the aims (A1) to (A4) indicated
above:

F (θ) =
n∑
i=1

G(r(i)(θ)), (6)

where ri(θ) = f(xi; θ)− yi, s is the median of absolute residuals |r1|, . . . , |rn|, and

G(t) =


t2 if |t| ≤ Cs,
B if |t| ≥ Cs(1 + a),

(|t| − Cs)B−(Cs)
2

Csa
+ (Cs)2 otherwise,

(7)

where C ≥ 1 is a constant factor, a is a small positive number, and B ∈ [0, (Cs)2] is a
parameter controlling the penalty for removal of data with large residuals. Since

y = (x− Cs)B − (Cs)2

Csa
+ (Cs)2 = (Cs)2

x− Cs(1 + a)

Cs− Cs(1 + a)
+B

x− Cs
Cs(1 + a)− Cs

is a linear interpolation between the points (Cs, (Cs)2) and (Cs(1 + a), B), it is clear that
the function G is Lipschitz-continuous. When C = 1, B = 0 and a→ 0, we obtain a function
which coincides with the LTS criterion almost everywhere. When B = (Cs)2, we obtain a
Huber-type function, which is properly scaled, because the median s is a robust estimator
of the scale of the residuals (i.e., it is not affected by very large residuals).

We will discuss the consequences of one or another choice of the parameters B and C
when we discuss numerical experiments in Section 5. Before that, we address the issue of
numerical minimisation of (6).

4 Optimization methods

First, we will make a few general observations about the objective in (6). This function is non-
convex and non-smooth, although it is Lipschitz-continuous. Compared to the LTS criterion
(2), it has equally complex structure, although our experiments with the CLTS criterion in
linear regression [3] indicated that the landscape of CLTS is less rugged compared to that of
LTS. While the OLS criterion leads to a complex objective when training the standard ANNs

7

(multiple local minima), backpropagation seems to be quite efficient in locating local minima
of the OLS (5). Neither backpropagation nor Levenberg Marquardt will work with the new
objective (6) directly. Therefore we studied several alternative minimisation methods.

Specifically, we focused on the following derivative free optimisation methods, which have
shown good potential when applied to robust linear regression [3].

• NEWUOA method of [41], combined with random start.

• derivative free bundle method (DFBM) [1,5], combined with random start.

• a derivative free method based on dynamical systems (DSO) [29,30].

Powell’s NEWUOA is a derivative free method for smooth functions, based on quadratic
model of the objective, obtained by interpolation of function values at a subset of m previous
trial points. While our objective is non-smooth (although it is piecewise smooth), we applied
NEWUOA because this method is faster than proper non-smooth optimisation [28] methods
like DFBM. Multiple local minima of the objective mean that we have to make several
starts of the algorithm from different starting points, where speed becomes an issue. DSO
was chosen because in previous studies [29, 30, 60] it delivered good performance when the
objectives had a large number of variables. We also tried other derivative free methods
(Nelder-Mead simplex method, pattern search APPSPACK [33, 34, 45]), but they were not
competitive and were discarded in favour of those mentioned above.

All mentioned methods could detect the outliers effectively, but they were not numerically
efficient nor sufficiently accurate when building regression models. We explain this by a
relatively large number of variables – the weights of the ANN. Therefore we decided to
design a hybrid method by combining detection and removal of outliers by using PCLTS
objective, and subsequent training by backpropagation using cleaned data. This approach
is in line with Gervini and Yohai’s REWLSE method for linear regression [14], in which an
initial high-breakdown estimator is improved by fully efficient OLS on cleaned data. This
proved to deliver accurate predictions for all data sets we have considered.

Thus our ANN training algorithm has the following steps.

I. Use one of the mentioned oprimisation methods with PCLTS objective (6).

II. Clean the data by removing the data with the residuals larger than Cs.

III. Use standard backpropagation with the OLS objective to train ANN on clean data.

The most time consuming step here is Step I. It requires multiple evaluations of the
objective at a large number of points (typically of order of 100, 000 in our experiments).
Step III is standard in ANN training, and it was executed using standard ANN training
library with default parameters (in our studies we used nnet package in R software [46]). It
took negligible CPU time compared to Step I. Step II is trivial.

We used implementations of NEWUOA, DFBM and DSO in C++ language (DFBM and
DSO taken form GANSO library [5], and a translation of NEWUOA from Fortran to C).

8

All methods have few overheads, and the main complexity was in evaluating the objective.
In order to achieve competitive CPU time, we parallelised calculation of the objective and
offloaded it to a graphics processing unit (GPU), NVIDIA’s Tesla C2050 [37, 38]. General
Purpose GPUs have recently become a valuable alternative to traditional CPUs and CPU
clusters. Tesla C2050 has 448 GPU cores and 3 GB of RAM, and can execute thousands of
threads at a time. GPUs have limitations too, in particular it is Single Instruction Multiple
Threads (SIMT) paradigm, which means that instructions in different threads (of the same
thread block) need to be almost identical. For parallel calculation of the residuals this is
not an issue, as this task is trivially parallel, and is executed using for all primitive [19,53].
Calculation of the median s is done in parallel using either GPU parallel sorting [7, 55],
or a specific GPU selection algorithm [2]. Summation is performed in parallel using GPU
reduction [19,39,53].

5 Numerical experiments

5.1 Data sets

We generated several challenging artificial data sets using test functions considered in several
previous papers on robust ANNs, and also used several real world data sets to which we
introduced outliers. The artificial data sets are described below in Data Sets 1 through
to 10. In all of these examples, the independent variables x were considered in Rm, where
the dimension m = p− 1 took on the values m = 1, 2, 3, 5, 10. The values of x were chosen
uniformly at random in the segment [minx,maxx] indicated below in describing each data
set of the corresponding example. The target variable was determined using the formula

y = h(x) + ε, (8)

where ε ∼ N(0, noiselevel). Graphs of the functions h for m = 1 can be found in [4]. In all
data sets, the noise level adopted the values 0, 0.1, 0.2. The sizes n of the samples in each
data set were taken as n ∈ {100, 500, 5000}. Then we replaced a proportion δ of the points
with five subsets of outliers. The outliers were divided into 5 subsets of equal size. Each
subset was centered at a point with the first m coordinates chosen uniformly at random
in the same segment as the explanatory variables, and with the last coordinate equal to
10,000 + N(0,0.01). For Data Sets 1 to 10 indicated below, we examined all combinations
of the dimension n = 1, 2, 3, 5, 10, proportion of outliers δ = 0, 0.1, 0.2, and noise level
ε = 0, 0.1, 0.2, which extends previously published experiments with such data sets.

Data Set 1 uses the model (8) with the function h given by the equation

h(x) = ||x||2/3, (9)

where ||x|| stands for the Euclidean norm of x and where the explanatory variables are again
chosen uniformly at random in the segment [minx,maxx] = [−2, 2]. Earlier, the robustness
of ANN for this function and data with outliers was investigated in [10], [54] and [13] in the
case where m = 1 and n = 501.

9

Data Set 2 deals with the model (8) using the function h given by the equation

h(x) = x1e
||x||, (10)

where the explanatory variables are again chosen uniformly at random in the segment
[minx,maxx] = [−2, 2]. This function was earlier considered in [13].

Data Set 3 is defined by the model (8) using the function h given by the formula

sinc(x) =
sin(||x||)
||x||

, (11)

where the explanatory variables are again chosen uniformly at random in the segment
[minx,maxx] = [−10, 10]. The function (11) was considered in numerous articles. For exam-
ple, it was investigated in [9], [10] and [56].

Data Set 4 uses the model (8) with the function h given by equation

h(x) = sin

(
5

m

m∑
i=1

xi

)
acos

(
1

m

m∑
i=1

xi

)
cos

(
3

m

m∑
i=1

xi − 2/n

)
, (12)

where x ∈ [−1, 1]m and n is the sample size. Earlier, the robustness of ANN for this function
was investigated in [11] and [12].

Data Set 5 is given by the model (8) with the following function

h(x) = sin(10π||x||) + sin(20π||x||), (13)

where the explanatory variables are uniformly chosen in the segment [minx,maxx] = [0, 0.3].
This function was investigated in [12], [25] and [40].

Data Set 6 deals with the model (8) given by the following function

h(x) = (x21 − x22 + x23 − x24 + · · ·) sin(0.5(x1 + x3 + · · ·)), (14)

where the explanatory variables are uniformly chosen in the segment [minx,maxx] = [−2, 2].
This function was investigated in [25] and [12].

Data Set 7 is defined by the model (8) with the function h given by the formula

h(x) =
sin(x1 + x3 + · · ·)
x1 + x3 + · · ·

sin(x2 + x4 + · · ·)
x2 + x4 + · · ·

, (15)

where x ∈ [−5, 5]m. Earlier, this function was considered in [12], for only one value of m = 2.
Data Set 8 is given by the model (8) with the function h defined by the equation

h(x) = 0.2(x1x2 · · · xm) + 1.2 sin(||x||2), (16)

where x ∈ [−1, 3]m. Earlier, this function was investigated in [12].
Data Set 9 uses the function h for the model (8) defined by the equation

h(x) = max{exp(−10x21), exp(−50x22), 1.25 exp(−5(||x||2))}, (17)

10

X

−1.0

−0.5

0.0

0.5

1.0

Y

−1.0

−0.5

0.0

0.5

1.0

Z

0.2

0.4

0.6

0.8

1.0

Figure 1: Plot of the surface of the function h used in Data set 9.

where x ∈ [−2, 2]m.
This function has an interesting surface plot in two variables, illustrated in Figure 1.
Data Set 10 is defined by the model (8) with the following function

h(x) = 0.5||x|| sin(||x||) + cos2(||x||), (18)

where x ∈ [−6, 6]m. It was considered in [26].
Data Set 11 is a real world data set from the standardized benchmark collection for

neural networks Proben 1 publicly available from [44]. Proben 1 was considered in many
articles, for example, [22, 23, 42, 43, 59]. The Data Set 11 is the set ‘building’ with 4208
instances, where the value of hourly electricity consumption is regarded as a function of 14
input variables and has to be predicted. Outliers have been introduced by replacing several
values of the dependent variable with very large values (10,000).

Data Set 12 is also a real world data set from Proben 1. It uses the values of output
variable ‘cold water consumption’ viewed as a function of 14 input variables, see [42, 44].

Data Set 13 is a real world data set from Proben 1 using the values of output variable
‘hot water consumption’ viewed as a function of 14 input variables, see [42,44].

Data Set 14 is a real world data set ‘hearta’ from Proben 1, see [42,44].

5.2 Parameters of the algorithms

We varied two parameters of the PCLTS objective: C and B. We took C ∈ {1, 8}. The
value C = 1 (with B = 0) corresponds to the LTS criterion, and it was interesting to observe
the difference larger values of C made. The value of the second parameter B were chosen in

11

{0, 1, 8}. Here we studied the influence of the penalty for removing the data when cleaning
the data set.

As far as the parameters of optimisation algorithms are concerned, we fixed them in
order to give each method approximately the same CPU budget as the others. We fixed the
number of random starts of NEWUOA and DFBM at 200. DFBM ran with the maximum
number of iterations set to 1000.

We used nnet package in R to perform the final stage of ANN training with cleaned data
with default parameters.

5.3 Benchmarking criteria

As it is customary in data analysis literature, we used the Root Mean Squared Error (RMSE)
to measure the quality of approximation. The data were split into training and test subsets.
The training subset contained noisy data with or without outliers. The test subset contained
noiseless data, i.e. the accurate values of the test functions h at uniformly distributed data
within the domain of each function we considered. The size of each test sample was equal
to that of the corresponding training sample. The test data set was generated separately
and was not provided to the training algorithm. We report the RMSE on the test data set,
which is the most important characteristic, reflecting ANN’s generalisation ability.

We also report the average CPU time taken by the PCLTS and the nnet procedures.
The CPU time did not depend much on the test function, nor the Gaussian noise level or
proportion of outliers, but rather on the dimension of the problem. Therefore we averaged
the CPU time over different experiments.

5.4 Results and discussion

In the Appendix we present detailed results of our numerical experiments. In Tables 1–2 we
compare RMSE values for PCLTS and standard backpropagation (nnet) for the first two test
functions we considered. The RMSE values for all the other test functions were very similar
and are omitted due to limited space. They are available from our technical report [4]. The
values in bold indicate the cases the method broke down.

Two facts are apparent from these tables. First, it is the failure of the traditional ANN
training to predict the test data sets. This can be viewed in Figure 2, top row, where the
predictions are not even close to the majority of the train data, nor the test data. Similar
pictures were obtained for other data sets, see [4]. This is reflected in very large RMSE in
the tables, which is consistent across the tables. Second, it is the ability of our method based
on the PCLTS objective to filter out the outliers. We note that the RMSE are practically
the same as RMSE of backpropagation in the absence of outliers (the values in nnet column
not in boldface). This indicates that all outliers were filtered out, and only few, if any, good
data were removed. So our method achieves the same accuracy when using contaminated
data, as nnet when using only clean data, as if the outliers were not there. This is repeated
across all data sets we used.

12

Furthermore, when there are no outliers in the data, our method delivers the same RMSE
as backpropagation, which means that no (or almost no) data were unnecessarily removed.

Table ?? show the CPU time of PCLTS and backpropagation, averaged across all the data
sets and proportions of outliers. Individual CPU times are available from [4]. We see that
PCLTS takes 1,000-10,000 times longer to train the ANN, compared to backpropagation.
We do not observe a clear pattern of rising CPU cost with the increased size of the data set.
This can be explained, on one hand, by a smaller number of iterations of the optimisation
algorithm for larger data, as the objective becomes less rough, and by the use of GPU to
offload calculation of the residuals. We have used 448 cores for these calculations, and for
5000 data GPU calculations did not reach the saturation point. While as expected, PCLTS
takes much longer, this time is compensated by the quality of the result. On the other hand,
the CPU appears not to be excessive.

Tables 4–7 contain RMSE and CPU time for the real world data sets we considered.
Again, we observe that standard backpropagation breaks down, while our method based on
PCLTS objective provides a very good fit, comparable to backpropagation in the absence of
outliers. CPU times are consistent with those reached in the examples with artificial data
sets.

Let us now look at the figures. As we mentioned, Figures 2 illustrate the inability of the
standard ANNs to predict the correct model, and the ability of the robust training based on
LTS and PCLTS to remove the outliers. Figures 2, 3 and 4 illustrate the difference between
the LTS and PCLTS criteria. Note that using LTS (middle row in Figure 2), the cusp of the
graph of the model function near the origin is lost. The reason is that LTS criterion treated
the data near the cusp as outliers. This is of course undesirable. The modified criterion
PCLTS (bottom row) gave a much better (in fact, nearly perfect) prediction. Hence PCLTS
achieved its aim to block unnecessary removal of data, by imposing a penalty for every
removal. In Figures 3, 4 the same effect is visible in the middle and at both ends of the
domain of the data respectively. Thus we conclude that the addition of the penalty term in
PCLTS criterion was justified.

As far as the optimisation methods are concerned, we noticed that the method DSO
reliably detected the outliers, and its CPU was significantly smaller than that of the other
two methods. CPU of random start with NEWUOA was on average six times higher, and
CPU of random start with DFBM was twelve to fifteen times higher than that of DSO. On
a few occasions random start with NEWUOA or DFBM have failed to deliver a model that
identified the outliers correctly. Therefore we concluded that for our objective, DSO was the
most suitable method among the alternatives we studied, and we concentrated on studying
this method in greater detail. The tables in the Appendix give CPU and RMSE for the DSO
method.

13

6 Conclusion

In this paper we investigated robust training of ANNs and detection of outliers in the data
from two perspectives. First, we illustrated the inability of the classical least squares criterion
to produce regression models not sensitive to outliers in the data. We investigated the use
of the least trimmed criterion and found that it delivered robust regression models. We
benchmarked various derivative free optimisation algorithms for optimising the LTS criterion
and found that the method based on dynamical systems optimisation (DSO) was superior to
several alternative methods. A contributing factor here is relatively large number of variables,
which ranged from ten to one hundred. We produced a hybrid algorithm, combining detection
of outliers by optimising the LTS criterion, their removal and subsequent fine tuning of the
ANN by backpropagation.

Second, we investigated an undesirable feature of the LTS criterion, unjustified removal of
valid data, and subsequent loss of accuracy. We introduced a new criterion, called Penalised
CLTS, which imposes a penalty for removing the data. By optimising PCLTS criterion, we
achieved a high degree of accuracy of the resulting regression model. Our method pinpoints
and filters out the outliers reliably, and its computational cost is reasonable.

References

[1] A. Bagirov. A method for minimization of quasidifferentiable functions. Optimization
Methods and Software, 17:31–60, 2002.

[2] G. Beliakov. Parallel calculation of the median and order statistics on GPUs with
application to robust regression. Technical report, arxiv :1104.2732, 2011.

[3] G. Beliakov and A. Kelarev. Global non-smooth optimization in robust multivariate
regression. Optimization Methods and Software, page to appear, 2012.

[4] G. Beliakov, A. Kelarev, and J. Yearwood. Robust artificial neural networks and outlier
detection. Technical report. Technical report, arxiv :1110.0169, 2011.

[5] G. Beliakov and J. Ugon. Implementation of novel methods of global and non-smooth
optimization: GANSO programming library. Optimization, 56:543–546, 2007.

[6] T. Bernholt. Robust estimators are hard to compute. Techni-
cal Report http://www.statistik.tu-dortmund.de/fileadmin/user upload/
Lehrstuehle/MSind/SFB 475/2005/tr52-05.pdf, University of Dortmund, 2005.

[7] D. Cederman and P. Tsigas. GPU-Quicksort: A practical quicksort algorithm for graph-
ics processors. ACM Journal of Experimental Algorithmics, 14:1.4.1–1.4.24, 2009.

[8] A. Cerioli. Multivariate outlier detection with high-breakdown estimators. Journal of
the American Statistical Association, 105:147–156, 2010.

14

[9] D.S. Chen and R.C. Jain. A robust back-propagation learning algorithm for function
approximation. IEEE Trans. Neural Networks, 5:467–479, 1994.

[10] C.-C. Chuang, J.-T. Jeng, and P.-T. Lin. Annealing robust radial basis function net-
works for function approximation with outliers. Neurocomputing, 56:123–139, 2004.

[11] C.C. Chuang, S.F. Su, and C.C. Hsiao. The annealing robust backpropagation (ARBP)
learning algorithm. IEEE Trans. Neural Networks, 11:1067–1077, 2000.

[12] C.C. Chuong and J.T. Jeng. CPBUM neural network for modeling with outliers and
noise. Applied Soft Computing, 7:957–967, 2007.

[13] M. El-Melegy, M. Essai, and A. Ali. Robust training of artificial feedforward neu-
ral networks. In A. Hassanien, A. Abraham, A. Vasilakos, and W. Pedrycz, editors,
Foundations of Computational Intelligence, volume 201 of Studies in Computational
Intelligence, pages 217–242. Springer Berlin / Heidelberg, 2009.

[14] D. Gervini and V.J. Yohai. A class of robust and fully efficient regression estimators.
Ann. Statist., 30:583–616, 2002.

[15] A.S. Hadi and A. Luceño. Maximum trimmed likelihood estimators: a unified approach,
examples, and algorithms. Computational Statistics and Data Analysis, 25:251–272,
1997.

[16] M.T. Hagan and M.B. Menhaj. Training feedforward networks with the Marquardt
algorithm. IEEE Trans. on Neural Networks, 5:989–993, 1994.

[17] F.R. Hampel. A general qualitative definition of robustness. Annals of Math. Statistics,
42:1887–1896, 1971.

[18] D.M. Hawkins and D.J. Olive. Applications and algorithms for least trimmed sum of
absolute deviations regression. Computational Statistics and Data Analysis, 32:119–134,
1999.

[19] J. Hoberock and N. Bell. Thrust: A parallel template library,
http://www.meganewtons.com/, 2010.

[20] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are uni-
versal approximators. Neural Networks, 2:359–366, 1989.

[21] P.J. Huber. Robust Statistics. Wiley, New York, 2003.

[22] C. Igel and M. Hüsken. Empirical evaluation of the improved Rprop learning algorithms.
Neurocomputing, 50:105–123, 2003.

[23] J. Ilonen, J.-K. Kamarainen, and J. Lampinen. Differential evolution training algorithm
for Feed-Forward Neural Networks. Neural Processing Letters, 17:93–105, 2003.

15

[24] J.-T. Jeng, C-T. Chuang, and C.-C. Chuang. Least trimmed squares based CPBUM
neural networks. In International Conference on System Science and Engineering, pages
187–192. IEEE, 2011.

[25] J.T. Jeng and T.T. Lee. Control of magnetic bearing systems via the Chebyshev
polunomial-based unified model (CPBUM) neural network. IEEE Trans. Man Cyber-
netics, Part B: Cybernet., 30:85–92, 2000.

[26] C.-C. Lee, P.-C. Chung, J.-R. Tsai, and C.-I. Chang. Robust radial basis function neural
networks. IEEE Trans. Systems, Man, Cybernetics. Part B: Cybernetics, 29:674–685,
1999.

[27] K. Liano. Robust error measure for supervised neural network learning with outliers.
IEEE Trans. on Neural Networks, 7:246–250, 1996.

[28] M.M. Makela and P. Neittaanmaki. Nonsmooth Optimization: Analysis and Algorithms
With Applications to Optimal Control. World Scientific, River Edge, NJ, 1992.

[29] M. Mammadov, A. Rubinov, and J. Yearwood. The study of drug-reaction relationships
using global optimization techniques. Optimization Methods and Software, 22:99–126,
2007.

[30] M.A. Mammadov, A. Rubinov, and J. Yearwood. Dynamical systems described by rela-
tional elasticities with applications to global optimization. In A. Rubinov and V. Jeyaku-
mar, editors, Continuous Optimisation: Current Trends and Modern Applications, pages
365–385. Springer, New York, 2005.

[31] R. Maronna, R. Martin, and V. Yohai. Robust Statistics: Theory and Methods. Wiley,
New York, 2006.

[32] T. Masters. Advanced algorithms for neural networks: a C++ sourcebook. Wiley, New
York, 1995.

[33] J.J Moré and S.M. Wild. Benchmarking derivative-free optimization algorithms. SIAM
J. Optim., 20:172–191, 2009.

[34] J. A. Nelder and R. Mead. A simplex method for function minimization. Computer
Journal, 7:308–313, 1965.

[35] T.D. Nguyen and R. Welsch. Outlier detection and least trimmed squares approximation
using semi-definite programming. Computational Statistics and Data Analysis, 12:3212–
3226, 2010.

[36] R. Nunkesser and O. Morell. An evolutionary algorithm for robust regression. Compu-
tational Statistics and Data Analysis, 54:3242–3248, 2010.

16

[37] NVIDIA. http://developer.nvidia.com/object/cuda 4 0 rc downloads.html, accessed 20
March, 2011.

[38] NVIDIA. Tesla datasheet, http://www.nvidia.com/docs/io/43395/
nv ds tesla psc us nov08 lowres.pdf, accessed 1 July 2011.

[39] NVIDIA. http://developer.download.nvidia.com/compute/cuda/1 1/website/data-
parallel algorithms.html, accessed 1 June 2011.

[40] Y.C. Pati and P.S. Krishnaprasad. Analysis and synthesis of feedforward neural net-
works using discrete affine wavelet transformations. IEEE Trans. Neural Networks,
4:72–85, 1993.

[41] M.J.D. Powell. The NEWUOA software for unconstrained optimization without deriva-
tives. In Large-Scale Nonlinear Optimization, Nonconvex Optimization and Its Appli-
cations, pages 255–297. Springer US, 2006.

[42] L. Prechelt. PROBEN 1 - a set of benchmarks and benchmarking rules for neu-
ral network training algorithms. Technical report, Technical Report 21/94, Univer-
sität Karlsruhe, D-76128 Jarlsruhem Germany, September 1994, http://digbib.ubka.uni-
karlsruhe.de/eva/ira/1994/21, 1994.

[43] L. Prechelt. Automatic early stopping using cross validation: quantifying the criteria.
Neural Networks, 11:761–767, 1998.

[44] L. Prechelt. PROBEN 1 – a standardized benchmark collection for neural network
algorithms, 1994, available from ftp://ftp.ira.uka.de/pub/neuron/proben1.tar.gz, 2010.

[45] A.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical Recipes in
C: The Art of Scientific Computing. Cambridge University Press, New York, 2002.

[46] R software. http://www.r-project.org/, 2012.

[47] P.J. Rousseeuw. Least median of squares regression. J. Amer. Statist. Assoc, 79:871–
880, 1984.

[48] P.J. Rousseeuw and A.M. Leroy. Robust Regression and Outlier Detection. Wiley, New
York, 2003.

[49] P.J. Rousseeuw and K. Van Driessen. Computing LTS regression for large data sets.
Data Mining and Knowledge Discovery, 12:29–45, 2006.

[50] A. Rusiecki. Robust LTS backpropagation learning algorithm. In F. Sandoval, A. Prieto,
J. Cabestany, and M. Graãa, editors, Computational and Ambient Intelligence, volume
4507 of Lecture Notes in Computer Science, pages 102–109. Springer Berlin / Heidelberg,
2007.

17

[51] A. Rusiecki. Robust MCD-based backpropagation learning algorithm. In L. Rutkowski,
R. Tadeusiewicz, L. Zadeh, and J. Zurada, editors, Artificial Intelligence and Soft Com-
puting, ICAISC 2008, volume 5097 of Lecture Notes in Computer Science, pages 154–
163. Springer Berlin / Heidelberg, 2008.

[52] M. Schyns, G. Haesbroeck, and F. Critchley. RelaxMCD: Smooth optimisation for the
minimum covariance determinant estimator. Comput. Stat. Data Anal., 54:843–857,
2010.

[53] S. Sengupta, M. Harris, Y. Zhang, and J. D. Owens. Scan primitives for GPU computing.
Graphics Hardware, pages 97–106, 2007.

[54] H.-L. Shieh, Y.-K. Yang, P.-L. Chang, and J.-T. Jeng. Robust neural-fuzzy method for
function approximation. Expert Systems with Applications, 36:6903–6913, 2009.

[55] E. Sintorn and U. Assarsson. Fast parallel GPU-sorting using a hybrid algorithm. J. of
Parallel and Distributed Computing, 68:1381–1388, 2008.

[56] A.J. Smola and B. Schölkopf. From regularzation operators to support vector kernels.
Neural Inf. Process. Syst., 10:343–349, 1998.

[57] A.J. Stromberg, O. Hossjer, and D.M. Hawkins. The least trimmed differences regression
estimator and alternatives. J. Amer. Statist. Assoc, 95:853–864, 2000.

[58] A.J. Stromberg and D. Ruppert. Breakdown in nonlinear regression. J. of the American
Statistical Association, 87:991–997, 1992.

[59] D. Tomandl and A. Schober. A Modified General Regression Neural Network (MGRNN)
with new, efficient training algorithms as a robust black box-tool for data analysis.
Neural Networks, 14:1023–1034, 2001.

[60] M. Zukerman, M. Mammadov, L. Tan, I. Ouveysi, and Lachlan A.L. To be fair or
efficient or a bit of both. Computers and Operations Research, 35:3787–3806, 2008.

18

Appendix

Table 1: Data Set 1, RMSE scores for test function h(x) = ||x||2/3. Values in bold indicate
breakdown of the method.

Input Proportion Size of the Noise level =0 Noise level=0.1 Noise level=0.2
dimension of outliers data set n pclts nnet pclts nnet pclts nnet

1 0 100 0.021 0.020 0.035 0.035 0.071 0.071
1 0 500 0.011 0.011 0.016 0.016 0.042 0.042
1 0 5000 0.006 0.006 0.008 0.008 0.010 0.009
1 0.2 100 0.013 1109.050 0.035 2151.400 0.076 2221.849
1 0.2 500 0.012 1626.452 0.018 1447.013 0.044 1018.946
1 0.2 5000 0.007 1020.319 0.419 1742.355 0.014 1545.335
1 0.4 100 0.027 3246.146 0.067 3041.953 0.110 2585.175
1 0.4 500 0.013 2937.150 0.022 2982.020 0.028 2406.259
1 0.4 5000 0.007 1203.257 0.013 2622.065 0.015 1243.061
1 0.5 100 0.029 4843.302 0.073 2844.756 0.102 4410.803
1 0.5 500 0.015 3671.261 0.029 2880.355 0.044 1776.429
1 0.5 5000 0.008 4831.715 0.009 3736.112 0.017 3299.489

2 0 100 0.024 0.024 0.136 0.139 0.208 0.234
2 0 500 0.020 0.019 0.036 0.040 0.072 0.067
2 0 5000 0.019 0.019 0.023 0.026 0.028 0.029
2 0.2 100 0.023 2992.371 0.109 3760.125 0.270 2715.137
2 0.2 500 0.025 1474.736 0.046 1845.146 0.080 2013.107
2 0.2 5000 0.021 1785.524 0.024 2207.706 0.032 1555.451
2 0.4 100 0.029 4212.044 0.086 3437.521 0.240 5209.511
2 0.4 500 0.029 1983.814 0.042 3162.076 0.094 2498.807
2 0.4 5000 0.018 3016.362 0.024 2795.595 0.037 2039.607
2 0.5 100 0.047 3479.871 0.272 4305.459 0.215 4167.711
2 0.5 500 0.025 3865.850 0.054 2350.706 0.092 2995.097
2 0.5 5000 0.018 2628.596 0.025 2670.277 0.034 3380.372

3 0 100 0.070 0.095 0.171 0.133 0.284 0.269
3 0 500 0.027 0.026 0.052 0.051 0.073 0.078
3 0 5000 0.024 0.035 0.031 0.028 0.037 0.036
3 0.2 100 0.063 3424.539 0.163 3456.296 0.461 2754.772
3 0.2 500 0.025 1876.883 0.055 2126.971 0.101 2288.269
3 0.2 5000 0.024 437.679 0.027 2458.412 0.048 913.914
3 0.4 100 0.096 3626.761 0.278 3593.988 0.437 4328.172
3 0.4 500 0.026 3051.583 0.060 2778.413 0.123 3218.664
3 0.4 5000 0.026 1952.740 0.039 2583.106 0.046 3696.025
3 0.5 100 0.127 3307.094 0.382 3786.831 0.591 3711.280
3 0.5 500 0.037 3240.812 0.061 2787.930 0.125 3445.775
3 0.5 5000 0.029 3042.017 0.034 2916.196 0.048 1602.479

5 0 100 0.081 0.078 0.260 0.147 0.499 0.401
5 0 500 0.057 0.052 0.079 0.080 0.110 0.119
5 0 5000 0.041 0.041 0.045 0.043 0.051 0.050
5 0.2 100 0.094 3891.054 0.308 3232.645 0.469 3732.648
5 0.2 500 0.050 2265.408 0.092 2270.477 0.150 2258.718
5 0.2 5000 0.040 1692.358 0.043 307.011 0.057 2128.485
5 0.4 100 0.171 3787.225 0.294 4359.977 0.534 3681.744
5 0.4 500 0.054 2397.568 0.096 1838.333 0.155 2902.272
5 0.4 5000 0.040 1614.782 0.046 1545.807 0.273 1990.707
5 0.5 100 0.280 4795.451 0.275 3706.393 0.421 4067.282
5 0.5 500 0.069 2573.188 0.098 2675.592 0.179 2648.058
5 0.5 5000 0.042 2844.733 0.046 2809.447 0.063 2857.316

10 0 100 0.306 0.299 0.270 0.314 0.329 0.361
10 0 500 0.159 0.115 0.254 0.178 0.296 0.290
10 0 5000 0.109 0.108 0.132 0.135 0.137 0.121
10 0.2 100 0.277 3236.948 0.315 4121.937 0.326 2894.181
10 0.2 500 0.113 1617.721 0.184 1895.575 0.278 2504.313
10 0.2 5000 0.231 1265.473 0.084 1572.269 0.231 1780.300
10 0.4 100 0.289 4101.092 0.308 4113.396 0.382 4037.487
10 0.4 500 0.260 1507.686 0.251 1854.632 0.345 2078.722
10 0.4 5000 0.082 1918.855 0.231 1971.229 0.231 2159.798
10 0.5 100 0.290 4977.258 0.264 3979.261 0.352 3930.745
10 0.5 500 0.274 3068.391 0.296 3154.727 0.427 2949.967
10 0.5 5000 0.135 1899.810 0.116 2224.139 0.127 1190.993

19

Table 2: Data Set 2, RMSE scores for test function h(x) = x1e
||x||. Values in bold indicate

breakdown of the method.

Input Proportion Size of the Noise level =0 Noise level=0.1 Noise level=0.2
dimension of outliers data set n pclts nnet pclts nnet pclts nnet

1 0 100 0.013 0.012 0.048 0.034 0.061 0.061
1 0 500 0.001 0.002 0.016 0.014 0.030 0.030
1 0 5000 0.000 0.000 0.005 0.005 0.011 0.010
1 0.2 100 0.010 2148.754 0.033 2.417 0.080 2400.194
1 0.2 500 0.001 2602.706 0.020 2604.085 0.031 2276.562
1 0.2 5000 0.000 2334.587 0.006 2887.469 0.013 2337.995
1 0.4 100 0.011 2596.561 0.042 1599.617 0.123 2828.158
1 0.4 500 0.001 3578.435 0.005 2605.814 0.042 2673.687
1 0.4 5000 0.000 2687.385 0.005 2832.465 0.007 2847.874
1 0.5 100 0.011 5176.776 0.049 2482.051 0.166 4171.906
1 0.5 500 0.001 2380.363 0.029 2499.944 0.033 4288.795
1 0.5 5000 0.000 3951.128 0.006 3039.429 0.017 2806.767

2 0 100 0.009 0.009 0.069 0.059 0.253 0.134
2 0 500 0.006 0.006 0.035 0.033 0.060 0.062
2 0 5000 0.005 0.003 0.011 0.011 0.018 0.020
2 0.2 100 0.011 2668.408 0.129 3288.958 0.241 2467.441
2 0.2 500 0.005 1914.969 0.034 1589.997 0.071 2400.486
2 0.2 5000 0.007 2234.668 0.010 2160.805 0.019 1422.155
2 0.4 100 0.040 2864.933 0.262 3479.801 0.280 4933.606
2 0.4 500 0.006 3074.300 0.033 2467.063 0.081 2423.949
2 0.4 5000 0.005 3090.935 0.013 2469.559 0.026 1853.020
2 0.5 100 0.069 7185.250 0.154 2.134 0.360 5569.739
2 0.5 500 0.007 4942.917 0.041 2364.485 0.113 4999.988
2 0.5 5000 0.004 2479.056 0.015 3596.367 0.031 3080.130

3 0 100 0.044 0.037 0.227 0.098 0.268 0.226
3 0 500 0.031 0.032 0.056 0.047 0.104 0.083
3 0 5000 0.023 0.028 0.029 0.027 0.037 0.030
3 0.2 100 0.063 2626.567 0.177 1834.107 0.309 3995.105
3 0.2 500 0.033 1661.228 0.060 1446.461 0.141 2012.120
3 0.2 5000 0.024 1703.977 0.027 1352.354 0.040 1199.587
3 0.4 100 0.084 3809.952 0.199 2427.211 0.343 3210.537
3 0.4 500 0.031 2513.025 0.068 3769.689 0.116 3696.497
3 0.4 5000 0.027 1294.315 0.031 1629.493 0.041 2063.066
3 0.5 100 0.177 4845.271 0.365 3040.607 0.654 3017.996
3 0.5 500 0.034 2605.272 0.083 1065.010 0.132 1689.498
3 0.5 5000 0.030 2077.777 0.031 1191.266 0.045 3005.893

5 0 100 0.031 0.030 0.205 0.085 0.305 0.354
5 0 500 0.018 0.018 0.060 0.054 0.118 0.125
5 0 5000 0.018 0.019 0.025 0.025 0.038 0.040
5 0.2 100 0.064 3564.496 0.212 1673.425 0.567 2573.004
5 0.2 500 0.026 1820.677 0.072 2316.268 0.122 2358.980
5 0.2 5000 0.019 1929.773 0.029 955.324 0.042 1275.134
5 0.4 100 0.029 4086.133 0.243 2086.533 0.718 3580.618
5 0.4 500 0.025 2382.771 0.075 1338.828 0.173 3114.589
5 0.4 5000 0.020 2748.883 0.033 770.710 0.052 1182.186
5 0.5 100 0.086 3790.846 0.293 1010.225 0.369 4958.779
5 0.5 500 0.027 2907.051 0.077 1990.227 0.196 3573.141
5 0.5 5000 0.019 2045.978 0.031 1345.384 0.056 2574.422

10 0 100 0.001 0.000 0.179 0.096 0.341 0.314
10 0 500 0.002 0.002 0.072 0.065 0.178 0.163
10 0 5000 0.001 0.001 0.025 0.025 0.057 0.056
10 0.2 100 0.001 3768.071 0.124 1333.593 0.235 3366.499
10 0.2 500 0.001 1593.702 0.097 1391.395 0.197 1733.066
10 0.2 5000 0.002 1023.063 0.027 468.724 0.062 1024.444
10 0.4 100 0.001 5155.331 0.151 1383.604 0.258 4460.762
10 0.4 500 0.002 2485.255 0.121 957.925 0.252 1898.246
10 0.4 5000 0.001 1958.776 0.034 1480.955 0.067 2200.060
10 0.5 100 0.001 4896.077 0.108 1447.494 0.247 4022.098
10 0.5 500 0.001 2489.607 0.133 748.545 0.235 2685.403
10 0.5 5000 0.001 1657.014 0.037 1481.272 0.069 1545.069

20

Table 3: Average CPU times (sec)

Dimension Size of the data set CPU PCLTS CPU nnet

1 100 530.19 0.05
1 500 315.26 0.25
1 5000 302.51 3.22
2 100 432.93 0.06
2 500 382.40 0.31
2 5000 338.02 3.83
3 100 500.41 0.06
3 500 488.78 0.28
3 5000 383.00 3.79
5 100 777.12 0.11
5 500 795.38 0.33
5 5000 573.85 4.46

10 100 1390.01 0.30
10 500 890.59 0.40
10 5000 969.32 4.85

21

Table 4: Data Set 11, RMSE scores for prediction of the electricity consumption. Values in
bold indicate breakdown of the method.

Proportion of outliers PCLTS train PCLTS test nnet train nnet test CPU PCLTS CPU nnet

0 0.07377254 0.07669042 0.07662421 0.07942267 732.852 4.9196
0.2 0.0732535 0.0768083 1721.716 1071.685 1313.783 5.0199
0.4 0.07328527 0.07779184 3395.867 2798.297 800.7642 1.9977
0.5 0.07314826 0.07771504 3726.083 3783.546 1585.115 1.3546

Table 5: Data Sets 12, RMSE scores for prediction of the cold water consumption. Values
in bold indicate breakdown of the method.

Proportion of outliers PCLTS train PCLTS test nnet train nnet test CPU PCLTS CPU nnet

0 0.03352069 0.03799872 0.04224156 0.04277332 1551.998 5.5072
0.2 0.03314315 0.03812518 1504.155 736.1127 879.4155 3.6342
0.4 0.03574897 0.03810132 3112.657 2725.164 676.9802 2.4515
0.5 0.03614024 0.03821851 3522.750 3630.974 960.6753 1.6193

Table 6: Data Sets 13, RMSE scores for prediction of the hot water consumption. Values in
bold indicate breakdown of the method.

Proportion of outliers PCLTS train PCLTS test nnet train nnet test CPU PCLTS CPU nnet

0 0.05732137 0.05889331 0.05732247 0.05874144 582.1506 5.6062
0.2 0.05633721 0.05898911 1966.307 1136.745 1025.413 4.9611
0.4 0.055599 0.05912662 3335.348 2747.096 604.2534 3.0936
0.5 0.05553557 0.05952139 1685.271 1570.897 1657.796 6.5511

Table 7: Data Sets 14, RMSE scores for prediction of heart disease. Values in bold indicate
breakdown of the method.

Proportion of outliers PCLTS train PCLTS test nnet train nnet test CPU PCLTS CPU nnet

0 0.2139786 0.2517887 0.2118541 0.2665598 922.7474 0.9273
0.2 0.2190235 0.2697414 2651.938 1682.814 1284.666 0.4501
0.4 0.2071636 0.292656 2926.835 2752.914 636.9798 0.371
0.5 0.2002703 0.3038773 2934.247 3429.113 448.0119 0.7827

22

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●●●●●●●●●●●●●●●●●●

●●●

●●●●●
●●●●●●●

●●●●●●●●●●●
●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●

●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●

●●●●●●●
●
●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●

●●●●●●●●●●
●
●●●●●
●●●●
●
●●
●

●●●●●●●
●●
●

●●●●●●
●●●
●
●●●

●
●●
●●●●
●●

●

●●●

●●
●
●●

●
●●●
●●
●●
●●●
●●●●
●
●
●
●●●
●●
●●
●●●●
●●
●
●●●
●●●
●
●
●●
●●
●●●
●●
●
●●●
●●●●
●
●
●
●●●
●●●
●●●●
●●

●●●●●
●●●●●
●●●
●●
●●●
●
●●
●●●●
●
●●●●
●●●●
●
●●●●
●●
●
●●●●●
●●●

●●
●●●
●●●
●●●
●●●
●●●
●●
●●●●●
●●●●
●●●●●
●●●
●●
●●
●

●●●
●●
●●●●
●
●●●
●●●●
●●●●
●●●●
●●
●●●

●●●
●●●●●●●●●
●●●
●●●
●●
●●●●●●●●●
●●●
●●●●
●●●●
●

−2 −1 0 1 2

0.
0

0.
5

1.
0

1.
5

x

−2 −1 0 1 2

xx

y

(a) noise level 0%

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●
●●●●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

−2 −1 0 1 2

0.
0

0.
5

1.
0

1.
5

x

−2 −1 0 1 2

xx
y

(b) noise level 10%

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●●

●

●●●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2 −1 0 1 2

0.
0

0.
5

1.
0

1.
5

2.
0

x

−2 −1 0 1 2

xx

y

(c) noise level 20%

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●
●●
●
●●●●●●●●●

●

●●●●●●●●●
●
●●●
●
●●●●●●
●●
●

●●●

●●
●●
●

●●
●●
●●●
●●
●●
●●●●
●●
●
●●●
●●
●●
●●●●
●●●
●●●
●●●
●●
●●●
●
●●●
●●
●●
●●●
●●●●
●
●
●●●●●
●●
●●●●
●●

●●●●●
●●●●●
●●●
●●●
●●●
●●
●●●●●

●●●●
●●●●
●●
●●●●
●●

●●●●●●
●●

●●●
●●●

●●●●
●●●
●●●
●●●
●●●●●●
●●●●●●●
●●●●
●●●

●●
●●●●●

●●●●●
●●●●●
●●●●●●

●●●●●
●●●
●●●
●
●●●●●●●●●●

●●●
●●●●

●●●●●●●●●●
●●●●●
●●●●●

●

−2 −1 0 1 2

0.
0

0.
5

1.
0

1.
5

2.
0

xx

y

−2 −1 0 1 2

x

(d) noise level 0%

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●●
●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●●

●

●

●●

●

●●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●
●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●
●●●●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●●

−2 −1 0 1 2

0.
0

0.
5

1.
0

1.
5

2.
0

xx

y

−2 −1 0 1 2

x

(e) noise level 10%

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2 −1 0 1 2

0.
0

0.
5

1.
0

1.
5

2.
0

xx

y

−2 −1 0 1 2

x

(f) noise level 20%

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●
●●
●
●●●●●●●●●

●

●●●●●●●●●
●
●●●
●
●●●●●●
●●
●

●●●

●●
●●
●

●●
●●
●●●
●●
●●
●●●●
●●
●
●●●
●●
●●
●●●●
●●●
●●●
●●●
●●
●●●
●
●●●
●●
●●
●●●
●●●●
●
●
●●●●●
●●
●●●●
●●

●●●●●
●●●●●
●●●
●●●
●●●
●●
●●●●●

●●●●
●●●●
●●
●●●●
●●

●●●●●●
●●

●●●
●●●

●●●●
●●●
●●●
●●●
●●●●●●
●●●●●●●
●●●●
●●●

●●
●●●●●

●●●●●
●●●●●
●●●●●●

●●●●●
●●●
●●●
●
●●●●●●●●●●

●●●
●●●●

●●●●●●●●●●
●●●●●
●●●●●

●

−2 −1 0 1 2

0.
0

0.
5

1.
0

1.
5

2.
0

xx

y

−2 −1 0 1 2

x

(g) noise level 0%

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●●
●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●●

●

●

●●

●

●●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●
●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●
●●●●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●●

−2 −1 0 1 2

0.
0

0.
5

1.
0

1.
5

2.
0

xx

y

−2 −1 0 1 2

x

(h) noise level 10%

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2 −1 0 1 2

0.
0

0.
5

1.
0

1.
5

2.
0

xx

y

−2 −1 0 1 2

x

(i) noise level 20%

Figure 2: Data set 1, standard ANN (top row) versus LTS (middle row). The proportion of
outliers is δ = 0.2, and n = 500. Gaussian noise in the data is 0, 0.1 and 0.2 respectively.
Red solid curve is the ANN prediction, the blue dashed curve is the (noiseless) test data,
and black dots are training data. The outliers are not shown. The effect of using PCLTS
objective with parameters C = 8 and B = 8 (bottom row) versus LTS objective (middle
row) is also illustrated. With the LTS objective, some data are unnecessarily removed as
outliers, and the ANN model is fitted incorrectly in these regions, whereas PCLTS objective
avoids this.

23

●●●●●●
●●●●
●●●

●●●●●●
●●●●
●●●●●●
●●●

●●●●●●
●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●
●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●
●●●

●●●●
●●●●●
●●●
●●●●
●●●
●●●
●●
●
●●●●
●
●
●
●●
●
●
●●
●
●●
●
●
●

●●●●

●
●●

●
●

●●
●●●
●●
●
●
●●
●●●
●●
●●●●●
●●
●●●
●●
●●●
●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●

●●●●

●●
●

●

●●●●
●
●
●●●●
●●

●
●●

●●●

●●●●●
●●●●●●
●●
●●●●●
●●●●
●●
●
●●●●●

●●●
●●
●
●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●●
●●●
●●●
●●
●●●●
●●
●●●
●●
●●●
●●●●●
●●●●
●●
●●●●
●●●
●●●●
●●●

●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●

−10 −5 0 5 10

−
0.

5
0.

0
0.

5
1.

0
1.

5

xx

y

−10 −5 0 5 10

x

(a) noise level 0%

●

●
●

●

●

●
●●

●

●

●

●●

●

●

●

●●●

●●

●

●●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●●

●

●

●

●●

●
●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●
●
●

●●

●●
●

●

●
●

●
●

●
●

●

●●

●

●

●

●

●

●

●
●

●
●●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●
●

●●

●

●
●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●●
●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●
●

●
●

●
●

●

●

●●

●●

●●

●

●

●●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●
●

●●●●

●

●
●

●

●

●

●

●●

●●

●

●

●

●●●

●

●

●

●

●

●

−10 −5 0 5 10

−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0

xx

y

−10 −5 0 5 10

x

(b) noise level 10%

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

−10 −5 0 5 10

−
0.

5
0.

0
0.

5
1.

0
1.

5

xx

y

−10 −5 0 5 10

x

(c) noise level 20%

●●●●●●●●●
●●●

●●●●●
●●●

●●●●●
●●●●●●

●●
●●●●●●

●●
●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●
●●●●●
●●
●
●●●
●●
●●
●
●●●
●●
●
●●●
●●●●
●●●
●

●●
●●●●
●●

●●
●
●

●●
●●
●
●

●

●●
●●
●●●

●
●●
●

●●

●
●●
●●●
●●
●●●
●●●●●
●●
●●●●●
●●●
●●●

●●●●●●●●●●●●●●●●●
●●●
●●●●

●●●●●●●●
●●●
●●●●

●
●
●●
●●●●●

●
●
●

●●●●●
●
●

●
●●●

●●●●●
●●
●●●●
●
●●●●●
●●●
●●●●●●●
●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●
●●●●●●●●●

●●●●
●
●●●
●●●
●●
●●
●●●●
●●
●●●
●●●●●●
●●
●●●●
●●●
●●●●●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

−10 −5 0 5 10

−
0.

5
0.

0
0.

5
1.

0
1.

5

x

−10 −5 0 5 10

xx

y

(d) noise level 0%

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●●
●

●
●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●●●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●
●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●
●●

●
●

●

●

●
●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

−10 −5 0 5 10

−
0.

5
0.

0
0.

5
1.

0
1.

5

x

−10 −5 0 5 10

xx

y

(e) noise level 10%

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●
●●

●

−10 −5 0 5 10

−
0.

5
0.

0
0.

5
1.

0
1.

5

x

−10 −5 0 5 10

xx

y

(f) noise level 20%

Figure 3: Data set 3, training with PCLTS with C = 1, B = 0 (LTS criterion, top) and
C = 8, B = 8 (bottom). The proportion of outliers is δ = 0.2, and n = 500. Red solid curve
is the ANN prediction, the blue dashed curve is the (noiseless) test data, and black dots are
training data. The outliers are not shown. We observe that LTS treats some valid data as
outliers (near the center of the graph).

24

●
●

●●

●●●●

●
●

●

●

●
●

●●●
●
●
●●

●●

●

●

●●
●

●●

●●
●

●●
●●
●
●●

●●●●

●

●

●
●
●
●
●●

●●

●

●●●●●●●●●●●●●●●●●
●●●●●
●●
●●●
●●
●
●
●
●●●
●
●●
●

●●

●●●

●

●

●

●●

●●
●
●

●

●●
●

●●
●

●

●
●●
●●

●

●●

●●●
●●

●
●
●●

●●
●●●
●●●
●●●●●●●●●●

●●
●●
●●
●

●●●●●●

●
●

●
●
●●●●●
●●●●●●

●●
●●

●

●●
●●
●●●
●●

●●●●●●●
●●●●
●●●●
●●
●●
●
●
●
●●●

●
●●
●
●
●
●

●●
●

●
●

●●
●●
●●●
●●●
●●
●●●
●●●●●●●●●●●●●

●
●
●●●●
●●●●●●●●●●●●●

●
●●●●
●●●●
●
●●●
●●●
●

●●●

●●
●
●

●

●
●●●●
●
●

●●●●●●●●●●●●●●●●●●●●
●●
●●●
●●
●
●●●
●●●●
●

●

●
●

●
●●

●
●●

●●●●
●●●
●●●
●
●●●
●●●●●
●●
●●
●●
●●●
●●●●●●●

●
●●●

●
●●●
●
●

●

●●●●
●●

●●●

●

●●

●●

●●

●
●
●●

●

●
●●●

●
●●

●
●
●
●●

●

●
●

●●
●●

●●●●

●
●●●●●●●●●●●●

●●●

●●

●

●
●●
●

●●●

●

●
●

●

●
●●

●

●●

●
●

●

●

●

●

●●
●●

●
●●

●
●

●●

●

●

−6 −4 −2 0 2 4 6

−
0.

5
0.

0
0.

5
1.

0

x

−6 −4 −2 0 2 4 6

xx

y

(a) noise level 0%

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●
●

●●
●
●

●

●

●

●
●

●

●

●

●

●

●●

●●●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●●

●●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

−6 −4 −2 0 2 4 6

−
0.

5
0.

0
0.

5
1.

0

x

−6 −4 −2 0 2 4 6

xx

y

(b) noise level 10%

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●
●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●
●

●

●
●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

−6 −4 −2 0 2 4 6

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

x

−6 −4 −2 0 2 4 6

xx

y

(c) noise level 20%

●
●

●●

●●●●

●
●

●

●

●
●

●●●
●
●
●●

●●

●

●

●●
●

●●

●●
●

●●
●●
●
●●

●●●●

●

●

●
●
●
●
●●

●●

●

●●●●●●●●●●●●●●●●●
●●●●●
●●
●●●
●●
●
●
●
●●●
●
●●
●

●●

●●●

●

●

●

●●

●●
●
●

●

●●
●

●●
●

●

●
●●
●●

●

●●

●●●
●●

●
●
●●

●●
●●●
●●●
●●●●●●●●●●

●●
●●
●●
●

●●●●●●

●
●

●
●
●●●●●
●●●●●●

●●
●●

●

●●
●●
●●●
●●

●●●●●●●
●●●●
●●●●
●●
●●
●
●
●
●●●

●
●●
●
●
●
●

●●
●

●
●

●●
●●
●●●
●●●
●●
●●●
●●●●●●●●●●●●●

●
●
●●●●
●●●●●●●●●●●●●

●
●●●●
●●●●
●
●●●
●●●
●

●●●

●●
●
●

●

●
●●●●
●
●

●●●●●●●●●●●●●●●●●●●●
●●
●●●
●●
●
●●●
●●●●
●

●

●
●

●
●●

●
●●

●●●●
●●●
●●●
●
●●●
●●●●●
●●
●●
●●
●●●
●●●●●●●

●
●●●

●
●●●
●
●

●

●●●●
●●

●●●

●

●●

●●

●●

●
●
●●

●

●
●●●

●
●●

●
●
●
●●

●

●
●

●●
●●

●●●●

●
●●●●●●●●●●●●

●●●

●●

●

●
●●
●

●●●

●

●
●

●

●
●●

●

●●

●
●

●

●

●

●

●●
●●

●
●●

●
●

●●

●

●

−6 −4 −2 0 2 4 6

−
0.

5
0.

0
0.

5
1.

0

x

−6 −4 −2 0 2 4 6

xx

y

(d) noise level 0%

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●
●

●●
●
●

●

●

●

●
●

●

●

●

●

●

●●

●●●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●●

●●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

−6 −4 −2 0 2 4 6

−
0.

5
0.

0
0.

5
1.

0

x

−6 −4 −2 0 2 4 6

xx

y

(e) noise level 10%

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●●

●

●
●

●

−6 −4 −2 0 2 4 6

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

x

−6 −4 −2 0 2 4 6

xx

y

(f) noise level 20%

Figure 4: Data set 10, δ = 0.2, n = 500. LTS method (top row) removed valid data near the
two lowest minima of the model function, and hence did not achieve good accuracy. PCLTS
(C = 8, B = 8, bottom row) correctly predicts the model, using 10 hidden neurons (top
row).

25

