78 research outputs found

    Deformations of Lifshitz holography

    Full text link
    The simplest gravity duals for quantum critical theories with z=2 `Lifshitz' scale invariance admit a marginally relevant deformation. Generic black holes in the bulk describe the field theory with a dynamically generated momentum scale Lambda as well as finite temperature T. We describe the thermodynamics of these black holes in the quantum critical regime where T >> Lambda^2. The deformation changes the asymptotics of the spacetime mildly and leads to intricate UV sensitivities of the theory which we control perturbatively in Lambda^2/T.Comment: 1+27 pages, 12 figure

    Criticality in correlated quantum matter

    Full text link
    At quantum critical points (QCP) \cite{Pfeuty:1971,Young:1975,Hertz:1976,Chakravarty:1989,Millis:1993,Chubukov:1 994,Coleman:2005} there are quantum fluctuations on all length scales, from microscopic to macroscopic lengths, which, remarkably, can be observed at finite temperatures, the regime to which all experiments are necessarily confined. A fundamental question is how high in temperature can the effects of quantum criticality persist? That is, can physical observables be described in terms of universal scaling functions originating from the QCPs? Here we answer these questions by examining exact solutions of models of correlated systems and find that the temperature can be surprisingly high. As a powerful illustration of quantum criticality, we predict that the zero temperature superfluid density, ρs(0)\rho_{s}(0), and the transition temperature, TcT_{c}, of the cuprates are related by Tcρs(0)yT_{c}\propto\rho_{s}(0)^y, where the exponent yy is different at the two edges of the superconducting dome, signifying the respective QCPs. This relationship can be tested in high quality crystals.Comment: Final accepted version not including minor stylistic correction

    Immunogenicity of Therapeutic Proteins: The Use of Animal Models

    Get PDF
    Immunogenicity of therapeutic proteins lowers patient well-being and drastically increases therapeutic costs. Preventing immunogenicity is an important issue to consider when developing novel therapeutic proteins and applying them in the clinic. Animal models are increasingly used to study immunogenicity of therapeutic proteins. They are employed as predictive tools to assess different aspects of immunogenicity during drug development and have become vital in studying the mechanisms underlying immunogenicity of therapeutic proteins. However, the use of animal models needs critical evaluation. Because of species differences, predictive value of such models is limited, and mechanistic studies can be restricted. This review addresses the suitability of animal models for immunogenicity prediction and summarizes the insights in immunogenicity that they have given so far

    Domain wall fermions for planar physics

    Get PDF
    In 2+1 dimensions, Dirac fermions in reducible, i.e. four-component representations of the spinor algebra form the basis of many interesting model field theories and effective descriptions of condensed matter phenomena. This paper explores lattice formulations which preserve the global U(2N) symmetry present in the massless limit, and its breakdown to U(N)xU(N) implemented by three independent and parity-invariant fermion mass terms. I set out generalisations of the Ginsparg-Wilson relation, leading to a formulation of an overlap operator, and explore the remnants of the global symmetries which depart from the continuum form by terms of order of the lattice spacing. I also define a domain wall formulation in 2+1+1d, and present numerical evidence, in the form of bilinear condensate and meson correlator calculations in quenched non-compact QED using reformulations of all three mass terms, to show that U(2N) symmetry is recovered in the limit that the domain-wall separation L tends to infinity. The possibility that overlap and domain wall formulations of reducible fermions may coincide only in the continuum limit is discussed

    A Low-Cost GPS GSM/GPRS Telemetry System: Performance in Stationary Field Tests and Preliminary Data on Wild Otters (Lutra lutra)

    Get PDF
    Background: Despite the increasing worldwide use of global positioning system (GPS) telemetry in wildlife research, it has never been tested on any freshwater diving animal or in the peculiar conditions of the riparian habitat, despite this latter being one of the most important habitat types for many animal taxa. Moreover, in most cases, the GPS devices used have been commercial and expensive, limiting their use in low-budget projects. Methodology/Principal Findings: We have developed a low-cost, easily constructed GPS GSM/GPRS (Global System for Mobile Communications/General Packet Radio Service) and examined its performance in stationary tests, by assessing the influence of different habitat types, including the riparian, as well as water submersion and certain climatic and environmental variables on GPS fix-success rate and accuracy. We then tested the GPS on wild diving animals, applying it, for the first time, to an otter species (Lutra lutra). The rate of locations acquired during the stationary tests reached 63.2%, with an average location error of 8.94 m (SD = 8.55). GPS performance in riparian habitats was principally affected by water submersion and secondarily by GPS inclination and position within the riverbed. Temporal and spatial correlations of location estimates accounted for some variation in the data sets. GPS-tagged otters also provided accurate locations and an even higher GPS fix-success rate (68.2%). Conclusions/Significance: Our results suggest that GPS telemetry is reliably applicable to riparian and even divin

    In Vivo Monitoring of mRNA Movement in Drosophila Body Wall Muscle Cells Reveals the Presence of Myofiber Domains

    Get PDF
    Background: In skeletal muscle each muscle cell, commonly called myofiber, is actually a large syncytium containing numerous nuclei. Experiments in fixed myofibers show that mRNAs remain localized around the nuclei in which they are produced. Methodology/Principal Findings: In this study we generated transgenic flies that allowed us to investigate the movement of mRNAs in body wall myofibers of living Drosophila embryos. We determined the dynamic properties of GFP-tagged mRNAs using in vivo confocal imaging and photobleaching techniques and found that the GFP-tagged mRNAs are not free to move throughout myofibers. The restricted movement indicated that body wall myofibers consist of three domains. The exchange of mRNAs between the domains is relatively slow, but the GFP-tagged mRNAs move rapidly within these domains. One domain is located at the centre of the cell and is surrounded by nuclei while the other two domains are located at either end of the fiber. To move between these domains mRNAs have to travel past centrally located nuclei. Conclusions/Significance: These data suggest that the domains made visible in our experiments result from prolonged interactions with as yet undefined structures close to the nuclei that prevent GFP-tagged mRNAs from rapidly moving between the domains. This could be of significant importance for the treatment of myopathies using regenerative cellbase
    corecore