24 research outputs found

    Demagnetization of Quantum Dot Nuclear Spins: Breakdown of the Nuclear Spin Temperature Approach

    Full text link
    The physics of interacting nuclear spins arranged in a crystalline lattice is typically described using a thermodynamic framework: a variety of experimental studies in bulk solid-state systems have proven the concept of a spin temperature to be not only correct but also vital for the understanding of experimental observations. Using demagnetization experiments we demonstrate that the mesoscopic nuclear spin ensemble of a quantum dot (QD) can in general not be described by a spin temperature. We associate the observed deviations from a thermal spin state with the presence of strong quadrupolar interactions within the QD that cause significant anharmonicity in the spectrum of the nuclear spins. Strain-induced, inhomogeneous quadrupolar shifts also lead to a complete suppression of angular momentum exchange between the nuclear spin ensemble and its environment, resulting in nuclear spin relaxation times exceeding an hour. Remarkably, the position dependent axes of quadrupolar interactions render magnetic field sweeps inherently non-adiabatic, thereby causing an irreversible loss of nuclear spin polarization.Comment: 15 pages, 3 figure

    Geminate and Nongeminate Pathways for Triplet Exciton Formation in Organic Solar Cells

    Get PDF
    Abstract: Organic solar cells (OSCs) have recently shown a rapid improvement in their performance, bringing power conversion efficiencies to above 18%. However, the open‐circuit voltage of OSCs remains low relative to their optical gap and this currently limits efficiency. Recombination to spin‐triplet excitons is a key contributing factor, and is widely, but not universally, observed in donor–acceptor blends using both fullerene and nonfullerenes as electron acceptors. Here, an experimental framework that combines time‐resolved optical and magnetic resonance spectroscopies to detect triplet excitons and identify their formation mechanisms, is reported. The methodology is applied to two well‐studied polymer:fullerene systems, PM6:PC60BM and PTB7‐Th:PC60BM. In contrast to the more efficient nonfullerene acceptor systems that show only triplet states formed via nongeminate recombination, the fullerene systems also show significant triplet formation via geminate processes. This requires that geminate electron–hole pairs be trapped long enough to allow intersystem crossing. It is proposed that this is a general feature of fullerene acceptor systems, where isolated fullerenes are known to intercalate within the alkyl sidechains of the donor polymers. Thus, the study demonstrates that engineering good donor and acceptor domain purity is key for suppressing losses via triplet excitons in OSCs

    Wacker-oxidation of Ethylene over Pillared Layered Material Catalysts

    Get PDF
    This paper concerns the Wacker oxidation of ethylene by oxygen in the presence of water over supported Pd/VOx catalysts. High surface area porous supports were obtained from layer-structured materials, such as, montmorillonite (MT), laponite (LT) (smectites), and hydrotalcite (layered double hydroxide, LDH) by pillaring. Before introduction of Pd, supports MT and LDH were pillared by vanadia. The laponite was used in titania-pillared form (TiO2-LAP) as support of Pd/VOx active component. Acetaldehyde (AcH), acetic acid (AcOH) and CO2 were the products with yields and selectivities, depending on the reaction conditions and the properties of the applied catalyst. Under comparable conditions the pillared smectite catalysts gave higher AcH yield than the pillared LDH catalyst. UV vis spectroscopic examination suggested that the pillared smectites contained polymeric chains of VO4, whereas only isolated monomeric VO4 species were present in the pillared LDH. The higher catalytic activity in the Wacker oxidation was attributed to the more favorable redox property of the polymeric than of the monomeric vanadia. The V3+ ions in the polymeric species can reduce O2 to O2- ions, whereas the obtained V5+ ions are ready to pass over O to Pd0 to generate PdO whereon the oxidation of the ethylene proceeds

    Geminate and nongeminate pathways for triplet exciton formation in organic solar cells

    No full text
    Organic solar cells (OSCs) have recently shown a rapid improvement in their performance, bringing power conversion efficiencies to above 18%. However, the open-circuit voltage of OSCs remains low relative to their optical gap and this currently limits efficiency. Recombination to spin-triplet excitons is a key contributing factor, and is widely, but not universally, observed in donor–acceptor blends using both fullerene and nonfullerenes as electron acceptors. Here, an experimental framework that combines time-resolved optical and magnetic resonance spectroscopies to detect triplet excitons and identify their formation mechanisms, is reported. The methodology is applied to two well-studied polymer:fullerene systems, PM6:PC60BM and PTB7-Th:PC60BM. In contrast to the more efficient nonfullerene acceptor systems that show only triplet states formed via nongeminate recombination, the fullerene systems also show significant triplet formation via geminate processes. This requires that geminate electron–hole pairs be trapped long enough to allow intersystem crossing. It is proposed that this is a general feature of fullerene acceptor systems, where isolated fullerenes are known to intercalate within the alkyl sidechains of the donor polymers. Thus, the study demonstrates that engineering good donor and acceptor domain purity is key for suppressing losses via triplet excitons in OSCs
    corecore