15 research outputs found

    Sex-related variation in compact bone microstructure of the femoral diaphysis in juvenile rabbits

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While gross morphological changes in the skeleton between males and females are well know, differences between sexes in the histomorphology are less known. It is important to have knowledge on the bone structure of rabbits, as this is a widely used species in biomedical research. A study was performed to evaluate the association between sex and the compact bone morphology of the femoral diaphysis in juvenile rabbits.</p> <p>Methods</p> <p>Seventeen clinically healthy 2–3 month-old rabbits (9 females, 8 males) were included in the study. The rabbits were euthanized and the right femur was sampled for analysis. 70–80 microns thick bone sections of the femoral diaphysis were prepared using standard histological equipment. The qualitative histological characteristics were determined according to internationally accepted classification systems while the quantitative parameters were assessed using the software Scion Image. Areas, perimeters, minimum and maximum diameters of primary osteons' vascular canals, Haversian canals and secondary osteons were measured. Additionally, blood plasma concentrations of progesterone, corticosterone, IGF-I, testosterone and estradiol were analyzed.</p> <p>Results</p> <p>Qualitative histological characteristics were similar for both sexes. However, variations of certain quantitative histological characteristics were identified. Measured parameters of the primary osteons' vascular canals were higher in males than for females. On the other hand, females had significant higher values of secondary osteons parameters. Differences in Haversian canals parameters were only significant for minimum diameter.</p> <p>Conclusion</p> <p>The study demonstrated that quantitative histological characteristics of compact bone tissue of the femoral diaphysis in juvenile rabbits were sex dependent. The variations may be associated with different growth and modeling of the femur through influence by sex-specific steroids, mechanical loads, genetic factors and a multitude of other sources. The results can be applied in experimental studies focusing on comparison of the skeletal biology of the sexes.</p

    Effects of dietary supplementation of nickel and nickel-zinc on femoral bone structure in rabbits

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nickel (Ni) and zinc (Zn) are trace elements present at low concentrations in agroecosystems. Nickel, however, may have toxic effects on living organisms and is often considered as a contaminant. This study reports the effect of peroral administrated Ni or a combination of Ni and Zn on femoral bone structure in rabbits.</p> <p>Methods</p> <p>One month-old female rabbits were divided into three groups of five animals each. Group 1 rabbits were fed a granular feed mixture with addition of 35 g NiCl<sub>2 </sub>per 100 kg of mixture for 90 days. In group 2, animals were fed a mixture containing 35 g NiCl<sub>2 </sub>and 30 g ZnCl<sub>2 </sub>per 100 kg of mixture. Group 3 without administration of additional Ni or Zn served as control. After the 90-day experimental period, femoral length, femoral weight and histological structure of the femur were analyzed and compared.</p> <p>Results</p> <p>The results did not indicate a statistically significant difference in either femoral length or weight between the two experimental groups and the control group. Also, differences in qualitative histological characteristics of the femora among rabbits from the three groups were absent, except for a fewer number of secondary osteons found in the animals of groups 1 and 2. However, values for vascular canal parameters of primary osteons were significantly lower in group 1 than in the control one. Peroral administration of a combination of Ni and Zn (group 2) led to a significant decreased size of the secondary osteons.</p> <p>Conclusions</p> <p>The study indicates that dietary supplementation of Ni (35 g NiCl<sub>2 </sub>per 100 kg of feed mixture) and Ni-Zn combination (35 g NiCl<sub>2 </sub>and 30 g ZnCl<sub>2 </sub>per 100 kg of the mixture) affects the microstructure of compact bone tissue in young rabbits.</p

    The Ontogenetic Osteohistology of Tenontosaurus tilletti

    Get PDF
    Tenontosaurus tilletti is an ornithopod dinosaur known from the Early Cretaceous (Aptian-Albian) Cloverly and Antlers formations of the Western United States. It is represented by a large number of specimens spanning a number of ontogenetic stages, and these specimens have been collected across a wide geographic range (from central Montana to southern Oklahoma). Here I describe the long bone histology of T. tilletti and discuss histological variation at the individual, ontogenetic and geographic levels. The ontogenetic pattern of bone histology in T. tilletti is similar to that of other dinosaurs, reflecting extremely rapid growth early in life, and sustained rapid growth through sub-adult ontogeny. But unlike other iguanodontians, this dinosaur shows an extended multi-year period of slow growth as skeletal maturity approached. Evidence of termination of growth (e.g., an external fundamental system) is observed in only the largest individuals, although other histological signals in only slightly smaller specimens suggest a substantial slowing of growth later in life. Histological differences in the amount of remodeling and the number of lines of arrested growth varied among elements within individuals, but bone histology was conservative across sampled individuals of the species, despite known paleoenvironmental differences between the Antlers and Cloverly formations. The bone histology of T. tilletti indicates a much slower growth trajectory than observed for other iguanodontians (e.g., hadrosaurids), suggesting that those taxa reached much larger sizes than Tenontosaurus in a shorter time

    Effects of a single intraperitoneal administration of cadmium on femoral bone structure in male rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Exposure to cadmium (Cd) is considered a risk factor for various bone diseases in humans and experimental animals. This study investigated the acute effects of Cd on femoral bone structure of adult male rats after a single intraperitoneal administration.</p> <p>Methods</p> <p>Ten 4-month-old male Wistar rats were injected intraperitoneally with a single dose of 2 mg CdCl<sub>2</sub>/kg body weight and killed 36 h after the Cd had been injected. Ten 4-month-old males served as a control group. Differences in body weight, femoral weight, femoral length and histological structure of the femur were evaluated between the two groups of rats. The unpaired Student's t-test was used for establishment of statistical significance.</p> <p>Results</p> <p>A single intraperitoneal administration of Cd had no significant effect on the body weight, femoral weight or femoral length. On the other hand, histological changes were significant. Rats exposed to Cd had significantly higher values of area, perimeter, maximum and minimum diameters of the primary osteons' vascular canals and Haversian canals. In contrast, a significant decrease in all variables of the secondary osteons was observed in these rats.</p> <p>Conclusions</p> <p>The results indicate that, as expected, a single intraperitoneal administration of 2 mg CdCl<sub>2</sub>/kg body weight had no impact on macroscopic structure of rat's femora; however, it affected the size of vascular canals of primary osteons, Haversian canals, and secondary osteons.</p
    corecore