184 research outputs found

    Performance deficits of NK1 receptor knockout mice in the 5 choice serial reaction time task: effects of d Amphetamine, stress and time of day.

    Get PDF
    Background The neurochemical status and hyperactivity of mice lacking functional substance P-preferring NK1 receptors (NK1R-/-) resemble abnormalities in Attention Deficit Hyperactivity Disorder (ADHD). Here we tested whether NK1R-/- mice express other core features of ADHD (impulsivity and inattentiveness) and, if so, whether they are diminished by d-amphetamine, as in ADHD. Prompted by evidence that circadian rhythms are disrupted in ADHD, we also compared the performance of mice that were trained and tested in the morning or afternoon. Methods and Results The 5-Choice Serial Reaction-Time Task (5-CSRTT) was used to evaluate the cognitive performance of NK1R-/- mice and their wildtypes. After training, animals were tested using a long (LITI) and a variable (VITI) inter-trial interval: these tests were carried out with, and without, d-amphetamine pretreatment (0.3 or 1 mg/kg i.p.). NK1R-/- mice expressed greater omissions (inattentiveness), perseveration and premature responses (impulsivity) in the 5-CSRTT. In NK1R-/- mice, perseveration in the LITI was increased by injection-stress but reduced by d-amphetamine. Omissions by NK1R-/- mice in the VITI were unaffected by d-amphetamine, but premature responses were exacerbated by this psychostimulant. Omissions in the VITI were higher, overall, in the morning than the afternoon but, in the LITI, premature responses of NK1R-/- mice were higher in the afternoon than the morning. Conclusion In addition to locomotor hyperactivity, NK1R-/- mice express inattentiveness, perseveration and impulsivity in the 5-CSRTT, thereby matching core criteria for a model of ADHD. Because d-amphetamine reduced perseveration in NK1R-/- mice, this action does not require functional NK1R. However, the lack of any improvement of omissions and premature responses in NK1R-/- mice given d-amphetamine suggests that beneficial effects of this psychostimulant in other rodent models, and ADHD patients, need functional NK1R. Finally, our results reveal experimental variables (stimulus parameters, stress and time of day) that could influence translational studies

    The pharmacokinetics of cefazolin in patients undergoing elective & semi-elective abdominal aortic aneurysm open repair surgery

    Get PDF
    Background: Surgical site infections are common, so effective antibiotic concentrations at the sites of infection are required. Surgery can lead to physiological changes influencing the pharmacokinetics of antibiotics. The aim of the study is to evaluate contemporary peri-operative prophylactic dosing of cefazolin by determining plasma and subcutaneous interstitial fluid concentrations in patients undergoing elective of semi-elective abdominal aortic aneurysm (AAA) open repair surgery

    Unidirectional relationship between heroin self-administration and impulsive decision-making in rats

    Get PDF
    Rationale: There is growing clinical evidence for a strong relationship between drug addiction and impulsivity. However, it is not fully clear whether impulsivity is a pre-existing trait or a consequence of drug abuse. Recent observations in the animal models show that pre-existing levels of impulsivity predict cocaine and nicotine seeking. Whether such relationships also exist with respect to non-stimulant drugs is largely unknown. Objective: We studied the relationship between impulsive choice and vulnerability to heroin taking and seeking. Materials and methods: Rats were selected in the delayed reward task based on individual differences in impulsive choice. Subsequently, heroin intravenous self-administration behaviour was analysed, including acquisition of heroin intake, motivation, extinction and drug- and cue-induced reinstatement. Throughout the entire experiment, changes in impulsive choice were monitored weekly. Results and discussion: High impulsivity did not predict measures of heroin taking. Moreover, high impulsive rats did not differ from low impulsive rats in extinction rates or heroin- and cue-induced reinstatement. However, both groups became more impulsive as heroin self-administration continued. During abstinence, impulsivity levels returned towards baseline (pre-heroin) levels. Our results indicate that, in contrast to psychostimulants, impulsive choice does not predict vulnerability to heroin seeking and taking. Conclusion: These data implicate that different neural mechanisms may underlie the vulnerability to opiate and psychostimulant dependence. Moreover, our data suggest that elevated impulsivity levels as observed in heroin-dependent subjects are a consequence of heroin intake rather than a pre-existing vulnerability trait. © 2011 The Author(s)

    Is Task-Irrelevant Learning Really Task-Irrelevant?

    Get PDF
    In the present study we address the question of whether the learning of task-irrelevant stimuli found in the paradigm of task-irrelevant learning (TIPL) [1]–[9] is truly task irrelevant. To test the hypothesis that associations that are beneficial to task-performance may develop between the task-relevant and task-irrelevant stimuli, or the task-responses and the task-irrelevant stimuli, we designed a new procedure in which correlations between the presentation of task-irrelevant motion stimuli and the identity of task-targets or task-responses were manipulated. We found no evidence for associations developing between the learned (task-irrelevant) motion stimuli and the targets or responses to the letter identification task used during training. Furthermore, the conditions that had the greatest correlations between stimulus and response showed the least amount of TIPL. On the other hand, TIPL was found in conditions of greatest response uncertainty and with the greatest processing requirements for the task-relevant stimuli. This is in line with our previously published model that suggests that task-irrelevant stimuli benefit from the spill-over of learning signals that are released due to processing of task-relevant stimuli

    Is Task-Irrelevant Learning Really Task-Irrelevant?

    Get PDF
    In the present study we address the question of whether the learning of task-irrelevant stimuli found in the paradigm of task-irrelevant learning (TIPL) [1]–[9] is truly task irrelevant. To test the hypothesis that associations that are beneficial to task-performance may develop between the task-relevant and task-irrelevant stimuli, or the task-responses and the task-irrelevant stimuli, we designed a new procedure in which correlations between the presentation of task-irrelevant motion stimuli and the identity of task-targets or task-responses were manipulated. We found no evidence for associations developing between the learned (task-irrelevant) motion stimuli and the targets or responses to the letter identification task used during training. Furthermore, the conditions that had the greatest correlations between stimulus and response showed the least amount of TIPL. On the other hand, TIPL was found in conditions of greatest response uncertainty and with the greatest processing requirements for the task-relevant stimuli. This is in line with our previously published model that suggests that task-irrelevant stimuli benefit from the spill-over of learning signals that are released due to processing of task-relevant stimuli

    Anti-relapse neurons in the infralimbic cortex of rats drive relapse-suppression by drug omission cues

    Get PDF
    Drug addiction is a chronic relapsing disorder of compulsive drug use. Studies of the neurobehavioral factors that promote drug relapse have yet to produce an effective treatment. Here we take a different approach and examine the factors that suppress – rather than promote – relapse. Adapting Pavlovian procedures to suppress operant drug response, we determined the anti-relapse action of environmental cues that signal drug omission (unavailability) in rats. Under laboratory conditions linked to compulsive drug use and heightened relapse risk, drug omission cues suppressed three major modes of relapse-promotion (drug-predictive cues, stress, and drug exposure) for cocaine and alcohol. This relapse-suppression is partially driven by omission cue-reactive neurons, which constitute small subsets of glutamatergic and GABAergic cells, in the infralimbic cortex. Future studies of such neural activity-based cellular units (neuronal ensembles/memory engram cells) for relapse-suppression can be used to identify alternate targets for addiction medicine through functional characterization of anti-relapse mechanisms

    Adult Spinal Cord Radial Glia Display a Unique Progenitor Phenotype

    Get PDF
    Radial glia (RG) are primarily embryonic neuroglial progenitors that express Brain Lipid Binding Protein (Blbp a.k.a. Fabp7) and Glial Fibrillary Acidic Protein (Gfap). We used these transcripts to demarcate the distribution of spinal cord radial glia (SCRG) and screen for SCRG gene expression in the Allen Spinal Cord Atlas (ASCA). We reveal that neonatal and adult SCRG are anchored in a non-ventricular niche at the spinal cord (SC) pial boundary, and express a “signature” subset of 122 genes, many of which are shared with “classic” neural stem cells (NSCs) of the subventricular zone (SVZ) and SC central canal (CC). A core expressed gene set shared between SCRG and progenitors of the SVZ and CC is particularly enriched in genes associated with human disease. Visualizing SCRG in a Fabp7-EGFP reporter mouse reveals an extensive population of SCRG that extend processes around the SC boundary and inwardly (through) the SC white matter (WM), whose abundance increases in a gradient from cervical to lumbar SC. Confocal analysis of multiple NSC-enriched proteins reveals that postnatal SCRG are a discrete and heterogeneous potential progenitor population that become activated by multiple SC lesions, and that CC progenitors are also more heterogeneous than previously appreciated. Gene ontology analysis highlights potentially unique regulatory pathways that may be further manipulated in SCRG to enhance repair in the context of injury and SC disease

    Prefrontal Norepinephrine Determines Attribution of “High” Motivational Salience

    Get PDF
    Intense motivational salience attribution is considered to have a major role in the development of different psychopathologies. Numerous brain areas are involved in “normal” motivational salience attribution processes; however, it is not clear whether common or different neural mechanisms also underlie intense motivational salience attribution. To elucidate this a brain area and a neural system had to be envisaged that were involved only in motivational salience attribution to highly salient stimuli. Using intracerebral microdialysis, we found that natural stimuli induced an increase in norepinephrine release in the medial prefrontal cortex of mice proportional to their salience, and that selective prefrontal norepinephrine depletion abolished the increase of norepinephrine release in the medial prefrontal cortex induced by exposure to appetitive (palatable food) or aversive (light) stimuli independently of salience. However, selective norepinephrine depletion in the medial prefrontal cortex impaired the place conditioning induced exclusively by highly salient stimuli, thus indicating that prefrontal noradrenergic transmission determines approach or avoidance responses to both reward- and aversion-related natural stimuli only when the salience of the unconditioned natural stimulus is high enough to induce sustained norepinephrine outflow. This affirms that prefrontal noradrenergic transmission determines motivational salience attribution selectively when intense motivational salience is processed, as in conditions that characterize psychopathological outcomes
    corecore