33 research outputs found

    FONZIE: An optimized pipeline for minisatellite marker discovery and primer design from large sequence data sets

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Micro-and minisatellites are among the most powerful genetic markers known to date. They have been used as tools for a large number of applications ranging from gene mapping to phylogenetic studies and isolate typing. However, identifying micro-and minisatellite markers on large sequence data sets is often a laborious process.</p> <p>Results</p> <p>FONZIE was designed to successively 1) perform a search for markers via the external software Tandem Repeat Finder, 2) exclude user-defined specific genomic regions, 3) screen for the size and the percent matches of each relevant marker found by Tandem Repeat Finder, 4) evaluate marker specificity (i.e., occurrence of the marker as a single copy in the genome) using BLAST2.0, 5) design minisatellite primer pairs via the external software Primer3, and 6) check the specificity of each final PCR product by BLAST. A final file returns to users all the results required to amplify markers. A biological validation of the approach was performed using the whole genome sequence of the phytopathogenic fungus <it>Leptosphaeria maculans</it>, showing that more than 90% of the minisatellite primer pairs generated by the pipeline amplified a PCR product, 44.8% of which showed agarose-gel resolvable polymorphism between isolates. Segregation analyses confirmed that the polymorphic minisatellites corresponded to single-locus markers.</p> <p>Conclusion</p> <p>FONZIE is a stand-alone and user-friendly application developed to minimize tedious manual operations, reduce errors, and speed up the search for efficient minisatellite and microsatellite markers departing from whole-genome sequence data. This pipeline facilitates the integration of data and provides a set of specific primer sequences for PCR amplification of single-locus markers. FONZIE is freely downloadable at: <url>http://www.versailles-grignon.inra.fr/bioger/equipes/leptosphaeria_maculans/outils_d_analyses/fonzie</url></p

    Evolution of Linked Avirulence Effectors in Leptosphaeria maculans Is Affected by Genomic Environment and Exposure to Resistance Genes in Host Plants

    Get PDF
    Brassica napus (canola) cultivars and isolates of the blackleg fungus, Leptosphaeria maculans interact in a β€˜gene for gene’ manner whereby plant resistance (R) genes are complementary to pathogen avirulence (Avr) genes. Avirulence genes encode proteins that belong to a class of pathogen molecules known as effectors, which includes small secreted proteins that play a role in disease. In Australia in 2003 canola cultivars with the Rlm1 resistance gene suffered a breakdown of disease resistance, resulting in severe yield losses. This was associated with a large increase in the frequency of virulence alleles of the complementary avirulence gene, AvrLm1, in fungal populations. Surprisingly, the frequency of virulence alleles of AvrLm6 (complementary to Rlm6) also increased dramatically, even though the cultivars did not contain Rlm6. In the L. maculans genome, AvrLm1 and AvrLm6 are linked along with five other genes in a region interspersed with transposable elements that have been degenerated by Repeat-Induced Point (RIP) mutations. Analyses of 295 Australian isolates showed deletions, RIP mutations and/or non-RIP derived amino acid substitutions in the predicted proteins encoded by these seven genes. The degree of RIP mutations within single copy sequences in this region was proportional to their proximity to the degenerated transposable elements. The RIP alleles were monophyletic and were present only in isolates collected after resistance conferred by Rlm1 broke down, whereas deletion alleles belonged to several polyphyletic lineages and were present before and after the resistance breakdown. Thus, genomic environment and exposure to resistance genes in B. napus has affected the evolution of these linked avirulence genes in L. maculans

    Tracing the Origin of the Fungal Ξ±1 Domain Places Its Ancestor in the HMG-Box Superfamily: Implication for Fungal Mating-Type Evolution

    Get PDF
    BACKGROUND: Fungal mating types in self-incompatible Pezizomycotina are specified by one of two alternate sequences occupying the same locus on corresponding chromosomes. One sequence is characterized by a gene encoding an HMG protein, while the hallmark of the other is a gene encoding a protein with an Ξ±1 domain showing similarity to the MatΞ±1p protein of Saccharomyces cerevisiae. DNA-binding HMG proteins are ubiquitous and well characterized. In contrast, Ξ±1 domain proteins have limited distribution and their evolutionary origin is obscure, precluding a complete understanding of mating-type evolution in Ascomycota. Although much work has focused on the role of the S. cerevisiae MatΞ±1p protein as a transcription factor, it has not yet been placed in any of the large families of sequence-specific DNA-binding proteins. METHODOLOGY/PRINCIPAL FINDINGS: We present sequence comparisons, phylogenetic analyses, and in silico predictions of secondary and tertiary structures, which support our hypothesis that the Ξ±1 domain is related to the HMG domain. We have also characterized a new conserved motif in Ξ±1 proteins of Pezizomycotina. This motif is immediately adjacent to and downstream of the Ξ±1 domain and consists of a core sequence Y-[LMIF]-x(3)-G-[WL] embedded in a larger conserved motif. CONCLUSIONS/SIGNIFICANCE: Our data suggest that extant Ξ±1-box genes originated from an ancestral HMG gene, which confirms the current model of mating-type evolution within the fungal kingdom. We propose to incorporate Ξ±1 proteins in a new subclass of HMG proteins termed MATΞ±_HMG

    Voicing by adapting and innovating employees: An empirical study on how personality and environment interact to affect voice behavior

    No full text
    This article reports two studies exploring how cognitive style preferences for adaption-innovation affect the likelihood that employees will voice ideas for organizational change toward their supervisors. As hypothesized, Study 1 demonstrates that innovatively compared to adaptively predisposed police officers are less likely to voice conventional ideas and more likely to voice novel ideas for solving work-related problems. Besides a replication of these findings, Study 2 shows how work satisfaction and the quality of the supervisor as voice manager shape the impact of adaption-innovation on employee likelihood to voice. That is, compared to innovators, adaptors are more likely to voice conventional ideas when they are dissatisfied rather than satisfied with work and perceive their supervisors as effective rather than ineffective voice managers. On the other hand, innovators compared to adaptors report greater likelihood to voice novel ideas when they are satisfied rather than dissatisfied with work and perceive their supervisors as effective rather than ineffective voice managers. Theoretical and practical implications of the findings are discussed
    corecore