13 research outputs found

    Physicochemical, textural and viscoelastic properties of palm diacylglycerol bakery shortening during storage

    Get PDF
    BACKGROUND: Diacylglycerol (DAG), which has health-enhancing properties, is sometimes added to bakery shortening to produce baked products with enhanced physical functionality. Nevertheless, the quantity present is often too little to exert any positive healthful effects. This research aimed to produce bakery shortenings containing significant amounts of palm diacyglycerol (PDG). Physicochemical, textural and viscoelastic properties of the PDG bakery shortenings during 3 months storage were evaluated and compared with those of commercial bakery shortening (CS). RESULTS: PDG bakery shortenings (DS55, DS64 and DS73) had less significant increments in slip melting point (SMP), solid fat content (SFC) and hardness during storage as compared to CS. Unlike CS, melting behaviour and viscoelastic properties of PDG bakery shortenings remained unchanged during storage. As for polymorphic transformation, CS contained only β crystals after 8 weeks of storage. PDG bakery shortenings managed to retard polymorphic transformation for up to 10 weeks of storage in DS55 and 12 weeks of storage in DS64 and DS73. CONCLUSION: PDG bakery shortenings had similar if not better storage stability as compared to CS. This is mainly due to the ability of DAG to retard polymorphic transformation from β′ to β crystals. Thus, incorporation of DAG improved physical functionality of bakery shortening

    Proteome-wide Analysis and CXCL4 as a Biomarker in Systemic Sclerosis.

    No full text
    Background Plasmacytoid dendritic cells have been implicated in the pathogenesis of systemic sclerosis through mechanisms beyond the previously suggested production of type I interferon. Methods We isolated plasmacytoid dendritic cells from healthy persons and from patients with systemic sclerosis who had distinct clinical phenotypes. We then performed proteome-wide analysis and validated these observations in five large cohorts of patients with systemic sclerosis. Next, we compared the results with those in patients with systemic lupus erythematosus, ankylosing spondylitis, and hepatic fibrosis. We correlated plasma levels of CXCL4 protein with features of systemic sclerosis and studied the direct effects of CXCL4 in vitro and in vivo. Results Proteome-wide analysis and validation showed that CXCL4 is the predominant protein secreted by plasmacytoid dendritic cells in systemic sclerosis, both in circulation and in skin. The mean (\ub1SD) level of CXCL4 in patients with systemic sclerosis was 25,624\ub12652 pg per milliliter, which was significantly higher than the level in controls (92.5\ub177.9 pg per milliliter) and than the level in patients with systemic lupus erythematosus (1346\ub11011 pg per milliliter), ankylosing spondylitis (1368\ub11162 pg per milliliter), or liver fibrosis (1668\ub11263 pg per milliliter). CXCL4 levels correlated with skin and lung fibrosis and with pulmonary arterial hypertension. Among chemokines, only CXCL4 predicted the risk and progression of systemic sclerosis. In vitro, CXCL4 down-regulated expression of transcription factor FLI1, induced markers of endothelial-cell activation, and potentiated responses of toll-like receptors. In vivo, CXCL4 induced the influx of inflammatory cells and skin transcriptome changes, as in systemic sclerosis. Conclusions Levels of CXCL4 were elevated in patients with systemic sclerosis and correlated with the presence and progression of complications, such as lung fibrosis and pulmonary arterial hypertension

    Expression of TLR7, TLR9, JAK2, and STAT3 genes in peripheral blood mononuclear cells from patients with systemic sclerosis

    No full text
    Systemic sclerosis (SSc) is a rare, chronic, multisystem autoimmune disease clinically characterized by progressive fibrosis of the skin and internal organs. The basic mechanism appears to involve endothelial cell injury, overproduction of extracellular matrix proteins, and aberrant immune activation. So far, there have been a few attempts to find genetic biomarkers for monitoring disease activity or for correlation with certain symptoms. In order to reveal reliable biomarkers, we analyzed the expression of four genes representing three important signaling pathways, TLR7, TLR9, and JAK2-STAT3. Using RT-qPCR technique, we analyzed the expression of TLR7, TLR9, JAK2, and STAT3 genes in peripheral blood mononuclear cells of 50 SSc patients and 13 healthy individuals. We detected significant upregulation of TLR7 gene expression in a group of SSc patients compared to non-SSc group. Receiver operating characteristic (ROC) analysis showed that TLR7 expression efficiently discriminates SSc cases from healthy individuals. High TLR7 expression positively correlated with the late form of disease, active SSc, and the presence of digital ulcers. Decreased levels of TLR9 and JAK2 mRNA were found in the patient's cohort in comparison to non-SSc individuals, but showed no correlation with specific clinical outcomes. The expression level of the STAT3 gene did not differ between the analyzed groups. This is the first study on the expression of TLR7, TLR9, and STAT3 genes in SSc patients. Our results show that TLR7, TLR9, and JAK2 genes are potential biomarkers for SSc. The results obtained in this study could contribute to better classification, monitoring, and outcome prediction of patients with SSc based on genetics
    corecore