22 research outputs found

    Over-the-Counter Monocyclic Non-Steroidal Anti-Inflammatory Drugs in Environment—Sources, Risks, Biodegradation

    Get PDF
    Recently, the increased use of monocyclic non-steroidal anti-inflammatory drugs has resulted in their presence in the environment. This may have potential negative effects on living organisms. The biotransformation mechanisms of monocyclic nonsteroidal anti-inflammatory drugs in the human body and in other mammals occur by hydroxylation and conjugation with glycine or glucuronic acid. Biotransformation/biodegradation of monocyclic non-steroidal anti-inflammatory drugs in the environment may be caused by fungal or bacterial microorganisms. Salicylic acid derivatives are degraded by catechol or gentisate as intermediates which are cleaved by dioxygenases. The key intermediate of the paracetamol degradation pathways is hydroquinone. Sometimes, after hydrolysis of this drug, 4- aminophenol is formed, which is a dead-end metabolite. Ibuprofen is metabolized by hydroxylation or activation with CoA, resulting in the formation of isobutylocatechol. The aim of this work is to attempt to summarize the knowledge about environmental risk connected with the presence of over-the-counter antiinflammatory drugs, their sources and the biotransformation and/or biodegradation pathways of these drugs

    Cometabolic Degradation of Naproxen by Planococcus sp. Strain S5

    Get PDF
    Naproxen is a non-steroidal anti-inflammatory drug frequently detected in the influent and effluent of sewage treatment plants. The Gram-positive strain Planococcus sp. S5 was able to remove approximately 30 % of naproxen after 35 days of incubation in monosubstrate culture. Under cometabolic conditions, with glucose or phenol as a growth substrate, the degradation efficiency of S5 increased. During 35 days of incubation, 75.14∈±∈1.71 % and 86.27∈±∈2.09 % of naproxen was degraded in the presence of glucose and phenol, respectively. The highest rate of naproxen degradation observed in the presence of phenol may be connected with the fact that phenol is known to induce enzymes responsible for aromatic ring cleavage. The activity of phenol monooxygenase, naphthalene monooxygenase, and hydroxyquinol 1,2-dioxygenase was indicated in Planococcus sp. S5 culture with glucose or phenol as a growth substrate. It is suggested that these enzymes may be engaged in naproxen degradation

    Impact of PhACs on Soil Microorganisms

    No full text
    International audienceThe use of reclaimed water in crop irrigation helps to mitigate water shortage. The fertilization of arable soils with sewage sludge, biosolids, or livestock manure reduces extensive application of synthetic fertilizers. However, both practices lead to the introduction of pharmaceutical active compounds (PhACs) in arable soil, known to host a wide range of living organisms, including microorganisms which are supporting numerous ecosystem services. In soils, the fate of PhACs is governed by different abiotic and biotic processes. Among them, soil sorption and microbial transformation are the most important ones and determine the fate, occurrence, and dispersion of PhACs into the different compartments of the environment. The presence of PhACs in soils can compromise the abundance, diversity, and activity of the soil microbial community which is one of the key players in a range of soil ecosystem services. This chapter reviews the current knowledge of the effects of PhACs, commonly found in wastewater effluents and derived organic fertilizers, on the soil microbial community
    corecore