98 research outputs found

    Supersymmetric QCD: Exact Results and Strong Coupling

    Get PDF
    We revisit two longstanding puzzles in supersymmetric gauge theories. The first concerns the question of the holomorphy of the coupling, and related to this the possible definition of an exact (NSVZ) beta function. The second concerns instantons in pure gluodynamics, which appear to give sensible, exact results for certain correlation functions, which nonetheless differ from those obtained using systematic weak coupling expansions. For the first question, we extend an earlier proposal of Arkani-Hamed and Murayama, showing that if their regulated action is written suitably, the holomorphy of the couplings is manifest, and it is easy to determine the renormalization scheme for which the NSVZ formula holds. This scheme, however, is seen to be one of an infinite class of schemes, each leading to an exact beta function; the NSVZ scheme, while simple, is not selected by any compelling physical consideration. For the second question, we explain why the instanton computation in the pure supersymmetric gauge theory is not reliable, even at short distances. The semiclassical expansion about the instanton is purely formal; if infrared divergences appear, they spoil arguments based on holomorphy. We demonstrate that infrared divergences do not occur in the perturbation expansion about the instanton, but explain that there is no reason to think this captures all contributions from the sector with unit topological charge. That one expects additional contributions is illustrated by dilute gas corrections. These are infrared divergent, and so difficult to define, but if non-zero give order one, holomorphic, corrections to the leading result. Exploiting an earlier analysis of Davies et al, we demonstrate that in the theory compactified on a circle of radius beta, due to infrared effects, finite contributions indeed arise which are not visible in the formal limit that beta goes to infinity.Comment: 28 pages, two references added, one typo correcte

    Gross-Neveu Models, Nonlinear Dirac Equations, Surfaces and Strings

    Full text link
    Recent studies of the thermodynamic phase diagrams of the Gross-Neveu model (GN2), and its chiral cousin, the NJL2 model, have shown that there are phases with inhomogeneous crystalline condensates. These (static) condensates can be found analytically because the relevant Hartree-Fock and gap equations can be reduced to the nonlinear Schr\"odinger equation, whose deformations are governed by the mKdV and AKNS integrable hierarchies, respectively. Recently, Thies et al have shown that time-dependent Hartree-Fock solutions describing baryon scattering in the massless GN2 model satisfy the Sinh-Gordon equation, and can be mapped directly to classical string solutions in AdS3. Here we propose a geometric perspective for this result, based on the generalized Weierstrass spinor representation for the embedding of 2d surfaces into 3d spaces, which explains why these well-known integrable systems underlie these various Gross-Neveu gap equations, and why there should be a connection to classical string theory solutions. This geometric viewpoint may be useful for higher dimensional models, where the relevant integrable hierarchies include the Davey-Stewartson and Novikov-Veselov systems.Comment: 27 pages, 1 figur

    Reliability of fluctuation-induced transport in a Maxwell-demon-type engine

    Get PDF
    We study the transport properties of an overdamped Brownian particle which is simultaneously in contact with two thermal baths. The first bath is modeled by an additive thermal noise at temperature TAT_A. The second bath is associated with a multiplicative thermal noise at temperature TBT_B. The analytical expressions for the particle velocity and diffusion constant are derived for this system, and the reliability or coherence of transport is analyzed by means of their ratio in terms of a dimensionless P\'{e}clet number. We find that the transport is not very coherent, though one can get significantly higher currents.Comment: 14 pages, 5 figure

    What two models may teach us about duality violations in QCD

    Full text link
    Though the operator product expansion is applicable in the calculation of current correlation functions in the Euclidean region, when approaching the Minkowskian domain, violations of quark-hadron duality are expected to occur, due to the presence of bound-state or resonance poles. In QCD finite-energy sum rules, contour integrals in the complex energy plane down to the Minkowskian axis have to be performed, and thus the question arises what the impact of duality violations may be. The structure and possible relevance of duality violations is investigated on the basis of two models: the Coulomb system and a model for light-quark correlators which has already been studied previously. As might yet be naively expected, duality violations are in some sense "maximal" for zero-width bound states and they become weaker for broader resonances whose poles lie further away from the physical axis. Furthermore, to a certain extent, they can be suppressed by choosing appropriate weight functions in the finite-energy sum rules. A simplified Ansatz for including effects of duality violations in phenomenological QCD sum rule analyses is discussed as well.Comment: 17 pages, 6 figures; version to appear in JHE

    Cosmological parameters from the clustering of AGN

    Get PDF
    We attempt to put constraints on different cosmological and biasing models by combining the recent clustering results of X-ray sources in the local (z0.1z\le 0.1) and distant universe (z1z\sim 1).Comment: 9 pages, 3 figures, to be published in the proceedings of the ''2nd Hellenic Cosmology Workshop'', Athens 2001, eds, Manolis Plionis & Spiros Kotsaki

    Gravitational Waves from Gravitational Collapse

    Get PDF
    Gravitational wave emission from the gravitational collapse of massive stars has been studied for more than three decades. Current state of the art numerical investigations of collapse include those that use progenitors with realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non--axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with advanced ground--based and future space--based interferometric observatories.Comment: 68 pages including 13 figures; revised version accepted for publication in Living Reviews in Relativity (http://www.livingreviews.org

    Varying constants, Gravitation and Cosmology

    Get PDF
    Fundamental constants are a cornerstone of our physical laws. Any constant varying in space and/or time would reflect the existence of an almost massless field that couples to matter. This will induce a violation of the universality of free fall. It is thus of utmost importance for our understanding of gravity and of the domain of validity of general relativity to test for their constancy. We thus detail the relations between the constants, the tests of the local position invariance and of the universality of free fall. We then review the main experimental and observational constraints that have been obtained from atomic clocks, the Oklo phenomenon, Solar system observations, meteorites dating, quasar absorption spectra, stellar physics, pulsar timing, the cosmic microwave background and big bang nucleosynthesis. At each step we describe the basics of each system, its dependence with respect to the constants, the known systematic effects and the most recent constraints that have been obtained. We then describe the main theoretical frameworks in which the low-energy constants may actually be varying and we focus on the unification mechanisms and the relations between the variation of different constants. To finish, we discuss the more speculative possibility of understanding their numerical values and the apparent fine-tuning that they confront us with.Comment: 145 pages, 10 figures, Review for Living Reviews in Relativit

    Gravitational Waves from Gravitational Collapse

    Full text link
    corecore